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This dissertation contains work of the author and joint work with C. Robin Graham concern-

ing the geodesic X-ray transform in the setting of asymptotically hyperbolic manifolds. It is

divided into three self contained chapters, each addressing a different question. The topic of

the first chapter is the local injectivity of the X-ray transform, extending a result proved by

Uhlmann and Vasy ([UV16]) on compact manifolds with boundary. Assuming knowledge of

the X-ray transform for geodesics contained in a small neighborhood of a boundary point we

show local injectivity for asymptotically hyperbolic metrics even modulo O(ρ5) in dimension

3 and higher. In the second chapter we construct examples of asymptotically hyperbolic

metrics demonstrating that in the asymptotically hyperbolic setting absence of conjugate

points does not suffice to exclude boundary conjugate points. The construction uses tech-

niques developed by Gulliver ([Gul75]) and clarifies the definition of a simple asymptotically

hyperbolic manifold, formulated by Graham, Guillarmou, Stefanov and Uhlmann ([GGS+]).

In the third chapter we show a stability estimate for the X-ray transform on simple asymp-

totically hyperbolic manifolds, extending to this setting the work of Stefanov and Uhlmann

on simple compact manifolds with boundary ([SU04]).
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1

INTRODUCTION AND STATEMENT OF THE RESULTS

This thesis consists of three self contained chapters addressing questions related to the

geodesic X-ray transform, given by

If(γ) =

∫
γ

fds, (0.0.1)

where γ is a geodesic of a Riemannian metric g on a Riemannian manifold and ds denotes

integration with respect to g-arc length, in the setting of asymptotically hyperbolic man-

ifolds. Typically one has access to the X-ray transform of an unknown function and the

goal is to infer as much information as possible regarding f : one would wish to know, for

example, whether the transform is injective and stable, what is its range, and whether it

is possible to have an inversion formula for recovering f . As is reasonable to expect, the

geometry of the Riemannian manifold greatly influences the answers to such questions, and

so do a priori assumptions on f , such as ones regarding its regularity and growth. In the

case of the 2-dimensional Euclidean space the geodesic X-ray transform is also known as

the Radon transform. It lies in the foundation of Computed Tomography and it has been

studied extensively since the early 20th century, starting with Radon’s 1917 paper ([Rad17]);

several classical results on the Radon transform from the point of view of tomography can

be found for instance in [Nat86]. The geodesic X-ray transform in various settings has nu-

merous applications, including medical, geophysical and ultrasound imaging. It is especially

important on compact manifolds with boundary: among other things, in this setting it is

the linearization of the long standing boundary rigidity problem over a conformal class of

metrics. The boundary rigidity problem is the question of whether a Riemannian metric g

on a compact manifold with boundary can be determined by the distance function between

boundary points, up to a diffeomorphism fixing the boundary. Partly due to its relevance to

the boundary rigidity problem, there is a well developed theory for the X-ray transform on
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compact manifolds with boundary.

Throughout this dissertation the geometric setting will be a class of non-compact Rie-

mannian manifolds called asymptotically hyperbolic (AH). Let M be a compact manifold

with boundary of dimension n + 1 and M be its interior. A C∞ metric g on M is called

asymptotically hyperbolic if for some (and hence any) smooth boundary defining function

ρ (that is, ρ
∣∣
∂M

= 0, ρ > 0 on M , dρ
∣∣
∂M
6≡ 0) the Riemannian metric g := ρ2g on

M extends to a smooth1 metric on M, with the additional property that |dρ|2g ≡ 1 on

∂M2. The classical example of an AH manifold is the Poincaré ball model of the hyper-

bolic space of constant sectional curvature −1, the manifold being the Euclidean unit ball

Bn+1 = {x = (x0, . . . , xn) ∈ Rn+1 : |x| < 1} with the metric

h := 4

∑n
j=0(dxj)2

(1− |x|2)2
.

Unlike hyperbolic space, AH manifolds need not be symmetric or homogeneous, so the tools

used to study them are primarily analytic. Interest in the study of AH manifolds has risen in

the past two decades, since the AdS/CFT conjecture, proposed in [Mal98], related conformal

field theories with gravity theories on AH spaces.

We proceed to list a few important properties of AH manifolds. Since for any smooth

boundary defining function ρ and any u ∈ C∞(M) the function ρeu is still a smooth boundary

defining function, g determines a conformal family of metrics on the boundary given by

[g
∣∣
T∂M

]. This conformal class of metrics determined by g is called the conformal infinity

of g. As shown in [Maz86], (M, g) is a geodesically complete Riemannian manifold with

sectional curvatures approaching −(|dρ|2g)
∣∣
∂M

= −1 as ρ → 0, and this justifies the name

asymptotically hyperbolic. Moreover, any geodesic γ(t) in an AH manifold that eventually

exits every compact set approaches a boundary point as t → ∞ and ρ ◦ γ(t) = O(e−t). In

[GL91], Graham and Lee show that for each conformal representative in the conformal infinity

of g there exists a unique boundary defining function ρ inducing a product decomposition

1Many authors assume less regularity than C∞ for g.

2Note that (|dρ|2g)
∣∣
∂M

is independent of the choice of boundary defining function.
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[0, ε)× ∂M of a collar neighborhood of the boundary such that the metric can be written in

the form

g =
dρ2 + hρ

ρ2
, (0.0.2)

where hρ is a 1-parameter family of smooth metrics on ∂M , smooth in ρ up to ρ = 0, h0

being the conformal representative. We say that an AH metric is in normal form if it is

written as in (0.0.2). Note that for ρ as in (0.0.2) one has |dρ|2g = 1 in a neighborhood of

∂M .

Due to some of the properties discussed above, studying the geodesic X-ray transform

on an AH manifold poses some interesting challenges. For instance, completeness implies

that the integral in (0.0.1) becomes If(γ) =
∫∞
−∞ f(γ(t))dt for any unit speed geodesic γ(t)

and it might not converge unless some conditions are imposed on the function f ; it suffices

to assume, for instance, that f ∈ | log ρ|αC0(M), α < −1, provided that the geodesic γ

eventually exits every compact set as both t→ ±∞ (i.e. is not trapped in either the forward

or backward direction). Another issue is related to the parametrization of the space of

geodesics, which is of central importance since If is a function on that space. On non-

trapping compact manifolds with boundary (that means by definition that all geodesics

intersect the boundary twice in finite time), one can parametrize geodesics by their incoming

velocities. In the AH setting it is not obvious how something similar can be done, since all

geodesics approach the boundary orthogonally (a parametrization of the space geodesics on

AH manifolds in a way analogous to the compact manifold with boundary case was defined

in [GGS+]; this point will be discussed in more detail in Chapter 3, Section 3.1).

In Chapter 1 we address the question of local injectivity for the X-ray transform on an

asymptotically hyperbolic manifold. This means the X-ray transform of a function is known

for geodesics staying within a neighborhood of a boundary point and one asks whether it is

possible to recover the function there. The positive answer to the corresponding question

on compact manifolds with boundary in dimensions 3 and higher by Uhlmann and Vasy

([UV16]) was one of the major breakthroughs of the past decade in the study of the geodesic
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X-ray transform. Given a compact manifold with strictly convex boundary of dimension

at least 3, they showed that the local geodesic X-ray transform is injective on functions

lying in weighted Sobolev spaces and supported in a neighborhood of a boundary point.

Moreover, they showed a stability estimate and global injectivity with reconstruction for the

X-ray transform, assuming in addition that the manifold can be foliated by strictly convex

hypersurfaces.

We describe the main result of Chapter 1, which is the result of a joint work with Robin

Graham. As already mentioned, we will focus on (0.0.1) restricted to a subset of geodesics. If

(M, g) is AH and U ⊂M (typically an open neighborhood of a point p ∈ ∂M or its closure),

a geodesic is said to be U -local if γ(t) ∈ U for all t ∈ R and limt→±∞ γ(t) ∈ U ∩ ∂M . The

set ΩU of U -local geodesics is nonempty if U is any open neighborhood of a boundary point;

this is a consequence of the existence of “short” geodesics (see section 2.2 of [GGS+]). As

we will indicate in Section 1.2, for U a small neighborhood of a boundary point, the map

f → If |ΩU can be defined on ρ3/2L2(U ; dvg) with values in an appropriate L2 space (here

dvg denotes the volume form with respect to the metric g on M).

To state the result we will need a hypothesis on the metric g. We say that an AH metric

g is even mod O(ρN), where N is a positive odd integer, if whenever g is written in normal

form (0.0.2) in a neighborhood of ∂M , one has

(∂ρ)
mhρ

∣∣
ρ=0

= 0 for m odd, 1 ≤ m < N. (0.0.3)

In the case when (0.0.3) holds for any odd N > 0 the metric g will be called even. As shown

in [Gui05, Lemma 2.1], evenness mod O(ρN) is a well defined property of an AH metric,

independent of the chosen conformal representative determining the normal form (0.0.2).

Our local injectivity result is the following:

Theorem 1. Let M be a manifold with boundary of dimension at least 3, with its interior

endowed with an asymptotically hyperbolic metric g that is even mod O(ρ5). Given any

neighborhood V in M of p ∈ ∂M , there exists a neighborhood U ⊂ V in M of p such that

f → If
∣∣
ΩU

is injective on ρ3/2L2(U ; dvg).
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Injectivity of the X-ray transform has been studied extensively on various classes of Rie-

mannian manifolds. On compact manifolds with boundary the theory is very well developed.

We mention a few important works and refer the reader to [IM] for a thorough survey: classi-

cal results can be found in [Muk75], [Muk77], [MR78] and [Sha94]; more recently, important

works include [PSU13] on surfaces, [Gui17], and [UV16] on compact manifolds with bound-

ary of dimension at least 3, as already mentioned. For classes of manifolds that overlap with

AH ones, there is well developed theory for the X-ray transform on hyperbolic space from

the point of view of symmetric spaces ([Hel11]), also see [BC91] and [Bal05]. More recently,

the X-ray transform has been studied on Cartan-Hadamard manifolds in [Leh] and [LRS18].

Those are by definition complete, simply connected manifolds of non-positive curvature; they

are diffeomorphic to Rn. The first work showing injectivity results for the X-ray transform

specifically in the setting of AH manifolds can be found in [GGS+].

Our approach for proving Theorem 1 is motivated by the following observation. Recall

that the Klein model for hyperbolic space is another metric on Bn+1, obtained from the

Poincaré metric by a change of the radial variable. Geodesics for the Klein model are straight

line segments in Rn+1 under suitable parametrizations. So the hyperbolic X-ray transform

can be identified with the Euclidean X-ray transform applied to a function supported in

the unit ball, modulo changing the parameter of integration on each geodesic. There is an

analogous relation for even AH metrics. An even AH metric induces what we call an even

structure on (M,∂M) subordinate to its smooth structure. This is a subatlas of the atlas

defining the smooth structure, with the property that all the transition maps for the even

structure are even diffeomorphisms. One can use the even structure to define a new smooth

structure (M e, ∂M e) on the topological manifold with boundary underlying (M,∂M) by

introducing r = ρ2 as a new defining function. As outlined at the end of Section 4 of [FG12],

when viewed relative to the smooth structure (M e, ∂M e), the metric g is projectively compact

in the sense that its Levi-Civita connection is projectively equivalent to a connection ∇̂

smooth up to the boundary, i.e. its geodesics agree up to parametrization with the geodesics

of ∇̂. The connection ∇̂ need not be the Levi-Civita connection of a metric as happens on
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hyperbolic space, but the Uhlmann-Vasy local injectivity result applies also to the X-ray

transform for smooth connections, so local injectivity for even AH metrics follows just by

quoting [UV16].

If the AH metric g is not even, one can still introduce an even structure and a corre-

sponding (M e, ∂M e) by introducing r = ρ2 as a new defining function. But in this case the

connection ∇̂ is no longer smooth up to the boundary: its Christoffel symbols have expan-

sions in
√
r. If ∂ρhρ

∣∣
ρ=0
6= 0 in (0.0.2), then the Christoffel symbols have r−1/2 terms so ∇̂

is not even continuous up to the boundary. If ∂ρhρ
∣∣
ρ=0

= 0 but (∂ρ)
3hρ
∣∣
ρ=0
6= 0, then ∇̂ has

√
r terms so it is continuous but not Lipschitz. Our assumption that g is even modulo O(ρ5)

guarantees that ∇̂ is at least a C1 connection.

In principle one could try to extend directly the proof in [UV16] to the case of a C1

connection like ∇̂. But the microlocal methods do not seem very well suited to such an

analysis. Instead we argue by perturbation: ∇̂ is a perturbation of a smooth connection,

and the perturbation gets smaller the closer one gets to the boundary. For the quantitative

control needed to carry this out, we need to use not only the local injectivity result of [UV16],

but also the associated stability estimate. We briefly indicate how this goes, beginning by

describing this stability estimate.

Let ∇ be a smooth connection on a manifold M e of dimension at least 3, with strictly

convex boundary given by r = 0, and M̃ a closed manifold containing M e. The authors of

[UV16] constructed a one-parameter family of “artificial boundaries” near a point p ∈ ∂M e

given by x = −η, where x ∈ C∞(M̃) satisfies x(p) = 0 and dx(p) = −dr(p) and η > 0,

and showed injectivity of the X-ray transform I of ∇ restricted to geodesics in M e entirely

contained in Uη := {x ≥ −η}∩{r ≥ 0} (see Figure 1). The proof is based on the construction

of a family of “microlocalized normal operators” Aχ,η,σ each one of which is, roughly speaking,

the conjugate by exponential weights of the average of If over the set of such geodesics

passing through a given point. Here σ is the parameter in the exponential weight and χ

is a cutoff function. They showed that for appropriately chosen χ, the operator Aχ,η,σ is

an elliptic pseudodifferential operator in Melrose’s scattering calculus which for sufficiently



7

Figure 1: The artificial boundary.

small η has trivial kernel when acting on functions supported in Uη, and derived the stability

estimate

‖f‖L2(Uη) ≤ C‖Aχ,η,σf‖H1,0
sc (Oη), (0.0.4)

where H1,0
sc denotes a scattering Sobolev space and Oη is a neighborhood of Uη in Xη :=

{x ≥ −η}.

If g is an AH metric even mod O(ρN), its Levi-Civita connection is projectively equivalent

as described above to a connection ∇̂ of the form ∇̂ = ∇+ rN/2−1B on M e, where ∇ and B

are smooth. If N ≥ 5, then ∇̂ is C1, so the constructions of its X-ray transform Î and the

operator Âχ,η,σ can be carried out just as for the smooth connection ∇. We show that the

norm of the perturbation operator

Âχ,η,σ − Aχ,η,σ : L2(Uη)→ H1,0
sc (Oη) (0.0.5)

goes to zero as η → 0. This gives an estimate of the form (0.0.4) for Âχ,η,σ for η sufficiently

small, which implies local injectivity since Âχ,η,σ factors through the X-ray transform Î.

The perturbation operator is estimated as in the classical Schur criterion bounding an L2

operator norm by the supremum of the L1 norms of the Schwartz kernel in each variable

separately. We lift the kernels of the operators Âχ,η,σ and Aχ,η,σ to a blown up space similar

to Melrose’s double stretched space (see [Mel94]), where their singularities are more easily

analyzed. Due to the fact that the connection ∇̂ is only of class C1, some rather technical
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analysis is required near each boundary face and corner of the blow up to conclude that the

kernel of Âχ,η,σ is sufficiently regular that the norm of the perturbation operator vanishes in

the limit as η → 0.

As is the case in [UV16], the method of the proof naturally yields reconstruction via a

Neumann series and a stability estimate for Î acting between Sobolev spaces on M e and

on the sphere bundle S0M e of a smooth metric g0 on M e, which we use to parametrize the

geodesics of ∇̂. One could pull back this estimate and obtain one for I between function

spaces on M and on the sphere bundle for g but the spaces so obtained are not natural,

so we do not pursue this. Moreover, one could obtain a global injectivity result in exactly

the same way as in [UV16] provided the compact manifold with boundary {ρ ≥ ε} admits a

strictly convex foliation, for ε sufficiently small. It would be of great interest to remove the

assumption of evenness modulo O(ρ5) in Theorem 1; we anticipate that a different method

would be necessary for addressing this. Also, the question of local injectivity for the X-ray

transform in dimension 2 is a very interesting problem, which is open even in the setting of

compact manifolds with boundary.

Chapter 2 is concerned with a question about the geometry of AH manifolds. Simple com-

pact manifolds with boundary are a natural setting for the study the X-ray transform and,

more generally, geometric inverse problems. Recall that a compact manifold with boundary

is called simple if it is non-trapping, it has strictly convex boundary and no conjugate points.

An analogous definition of a simple AH manifold was formulated in [GGS+] to address ques-

tions of tensor tomography and boundary rigidity. In the AH case, convexity of the boundary

is in a sense automatic: for any boundary defining function ρ and ε > 0 small enough the

sets ρ ≥ ε are strictly convex. The definition in [GGS+] of a simple AH manifold is that the

AH manifold be non-trapping (i.e. there exist no trapped geodesics) and without boundary

conjugate points. Here absence of boundary conjugate points means by definition that there

exists no pair of points p+, p− ∈ ∂M and unit speed geodesic γ with limt→±∞ γ(t) = p±

such that there exists a non-trivial Jacobi field Y along γ satisfying limt→±∞ |Y (t)|g = 0.

It was shown in [GGS+] that these conditions imply that the geodesic flow is Anosov with
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respect to the Sasaki metric (see [Ebe73] for the definition), which together with the main

result of [Kni18] implies that there are no conjugate points in the usual sense (interior con-

jugate points), i.e. there exists no non-trivial Jacobi field along any unit speed geodesic that

vanishes for two distinct finite times. A result in [Ebe73] implies if an AH manifold has no

interior conjugate points then there is no Jacobi field Y (t) along a unit speed geodesic with

the property |Y (0)|g = 0 = limt→∞ |Y (t)|g, that is, no “interior-boundary” conjugate points

can occur. This raises the question of whether a non-trapping AH manifold without interior

conjugate points necessarily does not exhibit boundary conjugate points, that is, whether all

non-trapping AH manifolds without interior conjugate points are simple. The main result

of Chapter 2, which is a joint work with Robin Graham, resolves this in the negative.

Theorem 2. For any integer n ≥ 1 there exist smooth non-trapping asymptotically hyperbolic

manifolds of dimension n+1 with boundary conjugate points but no interior conjugate points.

This result is related to work during the 1970s, when there was interest and activity

concerned with understanding the relationships between various properties on a Riemannian

manifold such as absence of conjugate points, Anosov geodesic flow, absence or presence

of focal points, and existence of open sets of strictly positive curvature (see, for instance

[Ebe73], [Kli74], [Gul75]). Our approach is inspired by techniques used in [Gul75] to construct

metrics elucidating the relationships between some of these properties. Such questions remain

of current interest; see, for example, §2.3 of [GLT] where methods of [Gul75] are used to

construct an asymptotically conic metric on Rn which has positive curvature on an open set

but no conjugate points.

Theorem 2 is proved by constructing explicit examples of manifolds having the properties

stated. We start by constructing a non-trapping, complete, O(n + 1)-invariant C1,1 metric

on Rn+1 which compactifies to an AH metric, such that there are no nontrivial Jacobi fields

that vanish twice in the interior but along radial geodesics there are Jacobi fields that vanish

as both t → ±∞. Here the C1,1 regularity implies existence and uniqueness of geodesics;

Jacobi fields are understood in a weak sense. Our manifold has constant positive sectional
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curvature in an open geodesic ball and negative sectional curvature outside a compact set;

when n = 1, the negative sectional curvature is constant whereas when n ≥ 2 this is not the

case. For our purposes, the size of the set of positive curvature has to be carefully chosen: if it

is too large, interior conjugate points occur, whereas if it is too small no boundary conjugate

points occur; there is a critical size for which there exist boundary conjugate points but no

interior ones. Because of this, our analysis is much more delicate than that of [Gul75], where

the conditions are open. Somewhat surprisingly, it turns out that for our C1,1 metric one can

compute exact formulas for all geodesics, sectional curvatures and Jacobi fields even though

the manifold has non-constant curvature outside any compact set for n ≥ 2. For this reason

our C1,1 metric may be of more general interest.

In the second half of the chapter (Section 2.2) we show that our metric can be approxi-

mated by smooth metrics that still have all the required properties. As already hinted, these

properties are quite unstable under perturbations of the metric: small variations can result

in either presence of interior conjugate points or absence of boundary ones. The analogous

approximation step in [Gul75] was trivial; any smooth, or even real-analytic, metric suffi-

ciently close continued to satisfy the requisite conditions. We analyze the stable Jacobi fields,

defined as those which vanish as t → ∞. By careful choice of parameters in our approxi-

mating metric we arrange that there is a stable Jacobi field along radial geodesics which also

vanishes as t → −∞ so that the corresponding metric has boundary conjugate points. We

then derive a criterion (Proposition 2.2.18) in terms of the behavior of the stable solution for

certain second order ODE’s that rules out solutions vanishing twice. The relevant behavior

can be controlled under perturbations of the metric to rule out interior conjugate points. Our

argument requires control over third derivatives of the stable solutions (two in a parameter

and one in the time variable) as the approximating metric approaches the C1,1 metric, for

which we have to carry out some rather technical analysis. The work included in Chapter 2

can also be found as a standalone publication ([EG]).

In Chapter 3 we remain in the global setting: we work on a simple AH manifold and

address the question of stability of the geodesic X-ray transform. Roughly speaking, this
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means that our goal is to establish that small perturbations of the X-ray transform (the

“measurement”) cannot originate from large perturbations of the unknown function f , and

find appropriate spaces to measure the “size” of a perturbation. In this chapter we make a

slight change in notation; now an AH manifold will be denoted by (M̊n+1, g) and it will be

the interior of a smooth compact manifold with boundary M . A generic smooth boundary

defining function for ∂M will be denoted by x.

Our approach to stability is mainly inspired by two works, namely those of Stefanov-

Uhlmann [SU04] and of Berenstein-Casadio Tarabusi ([BC91]), both of which analyze the

normal operator to the X-ray transform in different settings. On a simple compact manifold

with boundary (X, g̃), which is the setting of [SU04], the normal operator is given by Ng̃ =

I∗I, where

I∗F (z) =

∫
S∗zX

F (ξ)dµg̃(ξ), F ∈ C∞(S∗X), z ∈ X,

is the back-projection; here dµg̃ is the measure induced on each fiber of S∗zX by the Lebesgue

measure on T ∗z M̊ and for f ∈ C∞(X), If is understood as a function on the unit cosphere

bundle S∗X := {(z, ξ) ∈ T ∗X : |ξ|g̃ = 1} which is constant along the orbits of the geodesic

flow. For now the notation I∗ is formal, however I∗ can be interpreted as a formal adjoint for

I using suitable inner products and function spaces (this is discussed in Section 3.1 for the

AH case). The authors of [SU04] showed that Ng̃ extends to an elliptic pseudodifferential

operator of order −1 on X̃, where X̃ is an open domain slightly larger than X and of the

same dimension, such that its closure is still simple. The ellipticity of Ng̃ then implied the

existence of a left parametrix (inverse up to compact error) that allowed them to obtain a

stability estimate of the form

‖u‖L2(X) ≤ C‖Ng̃u‖H1(X̃), u ∈ L2(X̃), suppu ⊂ X, (0.0.6)

using injectivity of I on simple manifolds, which had already been established in the ’70s.

The construction of the normal operator carries over in the same way on hyperbolic space

and it is well defined on C∞ functions of suitable decay at infinity; the authors of [BC91]

derived explicit inversion formulas for it using the spherical Fourier transform for radial
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distributions on hyperbolic space (see [Hel99]). Even though they did not explicitly state a

stability estimate, the estimate of Theorem 3 below for the special case of hyperbolic space

follows immediately from their work using the machinery of the 0-calculus, which we will

discuss shortly.

In [GGS+] it was shown that simplicity of an AH manifold suffices to show that I is

injective on xC∞(M) (in fact it is shown there that one can allow for trapped geodesics as

well, provided that the trapped set is hyperbolic for the geodesic flow). The method of proof

relied on showing that functions a priori in xC∞(M) that lie in the nullspace of I actually

vanish to infinite order at ∂M and it does not yield stability. The main result of Chapter

3 is a stability estimate analogous to (0.0.6) on simple AH manifolds and a strengthened

injectivity result. The normal operator on a simple AH manifold (M̊, g) is defined similarly

to the case of simple compact manifolds with boundary: one lets

Ngf = I∗If(z) =

∫
S∗zM̊

If(ξ)dµg(ξ), f ∈ Ċ∞(M), z ∈ M̊,

where Ċ∞(M) denotes smooth functions vanishing to infinite order at the boundary and dµg

is the measure induced on the fibers of S∗M̊ by g, as before. In our setting Ng turns out to be

a relatively well behaved object that can be studied within the framework of the 0-calculus

of pseudodifferential operators of Mazzeo and Melrose. Those were introduced in [MM87]

and further developed in [Maz91] to study differential and pseudodifferential operators on

asymptotically hyperbolic manifolds (among other spaces in the case of [Maz91]), also see

[Lau03]. 0-pseudodifferential operators generalize the uniformly degenerate 0-differential

operators, consisting of the enveloping algebra of 0-vector fields : those are the smooth vector

fields on M that vanish on ∂M and are denoted by V0. They can be written locally near

∂M as smooth linear combinations of {x∂x, x∂y1 , . . . , x∂yn}, where yα restrict to coordinates

on ∂M . Our stability estimate will be in terms of certain weighted Sobolev spaces on which

0-pseudodifferential operators naturally act: we let dVg be the Riemannian volume density

on M induced by g and for k ∈ N0 = {0, 1, . . . } we let

xδHk
0 (M ; dVg) = {u ∈ xδL2(M ; dVg) : x−δV1 · · ·Vmu ∈ L2(M ; dVg), m ≤ k, Vj ∈ V0}.
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If s ≥ 0 then Hs
0(M ; dVg) is defined by interpolation and for s < 0 by duality with respect to

the L2(M ; dVg) pairing. Fixing vector fields Vj ∈ V0 in coordinate patches we can make sense

of the norms ‖ · ‖xδHk
0 (M ;dVg). As we will show in Section 3.3, it turns out that I and Ng can

be extended to operators on xδL2(M ; dVg) for δ > −n/2, bounded into appropriate weighted

Sobolev spaces; specifically forNg we have that it is bounded xδL2(M ; dVg)→ xδ
′
H1

0 (M ; dVg)

provided δ′ ≤ δ, δ > −n/2 and δ′ < n/2. The main result of this chapter is the following:

Theorem 3. Let (M̊n+1, g) be a simple AH manifold, n ≥ 1. Then I and Ng = I∗I are

injective on xδL2(M ; dVg), δ > −n/2. Moreover, one has the stability estimate:

‖u‖xδHs
0(M ;dVg) ≤ C‖Ng u‖xδHs+1

0 (M ;dVg), δ ∈ (−n/2, n/2), s ≥ 0.

Note that xC∞(M) ⊂ xδL2(M ; dVg) provided δ < 1 − n/2, so Theorem 3 includes the

injectivity result of [GGS+] on simple AH manifolds as a special case. However, their result

is used in an essential way in the proof, similarly to the way the injectivity of I on simple

compact manifolds with boundary was used to derive (0.0.6) in [SU04].

As mentioned before, the proof of Theorem 3 uses the 0-calculus. As we show in Section

3.3, Ng is an elliptic pseudodifferential operator in Ψ−1,n,n
0 (M) in the large 0-calculus (that

is, it is a pseudodifferential operator of order −1 whose Schwartz kernel vanishes to order

n at the side faces of the 0-stretched product, see Section 3.2). Its model operator 3 can

be identified with Nh, where h is the hyperbolic metric on the Poincaré ball; using the

explicit inversion formulas for Nh derived in [BC91] and methods developed in [MM87]

and [Maz91] we construct a left parametrix for Ng. In [MM87] and [Maz91] parametrices

were constructed for elliptic 0 and edge differential operators, whereas here we apply those

techniques to construct a parametrix for a pseudodifferential operator. The parametrix is

then used in two ways: firstly, one obtains an estimate

‖u‖xδHs
0(M ;dVg) ≤ C

(
‖Ngu‖xδHs+1

0 (M ;dVg) + ‖Ku‖xδHs
0(M ;dVg)

)
, δ ∈ (−n/2, n/2), s ≥ 0,

(0.0.7)

3The model operator is typically called the normal operator; however, we use this name to avoid confusion
with the normal operator Ng.
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where K : xδHs
0(M ; dVg) → xδHs

0(M ; dVg) is a compact operator. Next, using the Mellin

transform and the parametrix it can be shown that any function u ∈ xδL2(M ; dVg) in the

nullspace of Ng, where δ > −n/2, is smooth in M̊ and has a polyhomogeneous expansion

at ∂M , vanishing there to order at least n. The author is indebted to Rafe Mazzeo for

showing him this argument, which is similar in spirit to the constructions of polyhomogeneous

expansions for elements in the nullspace of elliptic edge differential operators in Section 7 of

[Maz91]. In [GGS+, Proposition 3.15] it is shown that if u ∈ xC∞(M) lies in the nullspace of I

then u vanishes to infinite order on ∂M , and one checks that the proof also works for u a priori

assumed polyhomogeneous and vanishing to order at least 1 at ∂M . Since the nullspace ofNg
agrees with that of I, it follows that u is in the nullspace of the latter and polyhomogeneous,

hence it vanishes to infinite order at ∂M . Once this has been established, the injectivity

argument in [GGS+] using Pestov identities applies to conclude that u ≡ 0. Finally the

injectivity of Ng together with (0.0.7) yields Theorem 3 using a standard functional analysis

result.

On compact manifolds with boundary, stability of the X-ray transform has been exten-

sively studied; we mention several related results. Many of the works below also include

stability results for the X-ray transform acting on tensor fields. On non-trapping manifolds

with strictly convex boundary (compact dissipative Riemannian manifolds) that satisfy a

curvature condition that excludes conjugate points (thus for a subclass of simple manifolds),

a non-sharp stability estimate for I is proved in [Sha94] (Theorem 4.3.3) citing earlier works

of Mukhometov and Mukhometov-Romanov in the ’70s ([Muk77], [MR78]), among others.

As already mentioned, on simple compact manifolds with boundary, a stability estimate for

the normal operator similar to the one in Theorem 3 is derived in [SU04]; also see [FSU08]

for an analogous result for weighted X-ray transforms over general families of curves without

conjugate points, defined in an appropriate sense. In [AS] a sharp stability estimate was ob-

tained for I on simple manifolds. In the presence of conjugate points, the result of Uhlmann

and Vasy ([UV16]) shows stability on compact manifolds with strictly convex boundary of

dimension at least 3 that satisfy a foliation condition by strictly convex hypersurfaces. Those
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manifolds can have conjugate points. Moreover, the results in [HU18] imply that under ge-

ometric assumptions stability holds on manifolds with conjugate points for certain Sobolev

spaces. In the non-compact setting, sharp stability estimates are known for the X-ray trans-

form in Rn (see [Nat86], Section II.5). As we already mentioned, in the case of hyperbolic

space a stability estimate as in Theorem 3 follows immediately from the work of [BC91];

moreover, the inversion of the hyperbolic Radon transform on the two dimensional hyper-

bolic space has been numerically implemented in a stable manner ([LP97], [FKL+00]). In

the setting of AH manifolds, as already mentioned, the proof of the main result in Chapter

1 can be used to derive a stability estimate in the local setting, which can be made global if

one assumes a foliation condition.

A future direction would be to use Theorem 3 to obtain a stability estimate in terms of I;

based on the case of compact manifolds with boundary we expect that it is possible to show

that an appropriately weighted L2 norm of a function is estimated by a suitable Sobolev

norm of its X-ray transform with order of regularity 1/2, by showing a suitable mapping

property for I∗. We plan to pursue this in the immediate future. It would also be interesting

to explore whether stability still holds in the AH setting when one relaxes the simplicity

assumption. In the compact manifold with boundary setting, presence of conjugate points in

the interior of a compact Riemannian surface causes stability to fail in dimension 2 ([SU12],

[MSU15]), and it is natural to expect an analogous behavior in the AH setting. However,

in dimension 3 and higher, additional geometric assumptions can allow for stability even if

there are conjugate points ([UV16], [HU18]) so it is likely that analogous results hold on AH

manifolds. It would be especially interesting to investigate whether stability or instability

holds in the presence of boundary conjugate points (for instance, in the setting of Chapter 2).

It would also be interesting to study stability in the presence of trapped geodesics; as already

mentioned, in the case when the trapped set is hyperbolic for the geodesic flow, injectivity

of I on xC∞(M) is known by [GGS+] and stability can be shown on compact manifolds with

strictly convex boundary, no conjugate points and hyperbolic trapped set (see [Gui17]).
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Chapter 1

LOCAL INJECTIVITY FOR THE GEODESIC X-RAY
TRANSFORM ON ASYMPTOTICALLY HYPERBOLIC

MANIFOLDS

As already discussed in the Introduction, this chapter is concerned with local injectivity

for the X-ray transform on asymptotically hyperbolic manifolds, which is proved via projec-

tive compactification of an AH manifold (M, g). In Section 1.1 we define even structures on a

manifold with boundary and construct the new manifold with boundary (M e, ∂M e) obtained

by introducing r = ρ2 as a new defining function. We show that via this construction, even

asymptotically hyperbolic metrics are the same as projectively compact metrics, only viewed

relative to different smooth structures near infinity. In Section 1.2 we use this observation to

relate the X-ray transforms for g and ∇̂, and then deduce Theorem 1 for even AH metrics.

Section 1.3 begins the analysis for the C1 connection ∇̂ arising from an AH metric even mod

O(ρ5). We decompose ∇̂ into a smooth projectively compact connection ∇ and a nonsmooth

error term and extend both to the larger manifold M̃ . We also prove Lemma 1.3.1, which

states that the exponential map for ∇̂ has one more degree of regularity than expected. In

Section 1.4 we review scattering Sobolev spaces on a manifold with boundary, the construc-

tion of the microlocal normal operator Aχ,η,σ and the stability estimate (0.0.4), and show

how Theorem 1 follows from Proposition 1.4.6, which is the assertion that the norm of the

perturbation operator (0.0.5) goes to zero as η → 0. In Section 1.5 we describe the blown-up

double space, analyze in detail the lift of the kernel of Aχ,η,σ to this space, and conclude with

the proof of Proposition 1.4.6. Throughout this chapter, lower case Latin indices i, j, k label

objects on M or M e and run between 0 and n in coordinates. Lower case Greek indices α,

β, γ label objects on ∂M = ∂M e and run between 1 and n in coordinates. So a Latin index
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corresponds to a pair i↔ (0, α).

1.1 Even Asymptotically Hyperbolic = Projectively Compact

The proof of the main result of this chapter (Theorem 1) is based on an equivalence between

even asymptotically hyperbolic metrics and projectively compact metrics, briefly outlined at

the end of Section 4 of [FG12]. Since it is of central importance, we describe this equivalence

in more detail. We begin by recalling the notions of projective equivalence and projectively

compact metrics. A reference for projective equivalence is [Poo81, §5.24].

Two torsion-free connections ∇ and ∇̂ on a smooth manifold are said to be projectively

equivalent if they have the same geodesics up to parametrization. This is equivalent to the

condition that their difference tensor ∇̂ − ∇ is of the form v(iδ
k
j) = 1

2
(viδ

k
j + vjδ

k
i ) for some

1-form v. If γ(t) is a geodesic for ∇, then γ(t(τ)) is a geodesic for ∇̂, where t(τ) solves the

differential equation t′′ = µ(t)(t′)2 with µ(t) = −vγ(t)(γ
′(t)). If v = du happens to be exact,

then this equation for the parametrization reduces to the first order equation

t′ = ce−u(γ(t)) (1.1.1)

which can be integrated by separation of variables.

Let eg be a metric on the interior of a manifold with boundary (M e, ∂M e). (The explana-

tion for the super/subscript e will be apparent shortly. For now this is just an inconsequential

notation.) We say that eg is projectively compact if near ∂M e it has the form

eg =
dr2

4r2
+
k

r
,

where r is a defining function for ∂M e and k is a smooth symmetric 2-tensor on M e which

is positive definite when restricted to T∂M e. It is easily checked that this class of metrics is

independent of the choice of defining function r. Elementary calculations (see (1.3.1) below)

show that if e∇ is the Levi-Civita connection of such a metric and r a defining function, then

the connection ∇̂ defined by

∇̂ = e∇+D, Dk
ij = v(iδ

k
j), v = dr/r (1.1.2)
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extends smoothly up to ∂M e. Thus e∇ is projectively equivalent to the smooth connection

∇̂. It turns out that projectively compact metrics are the same as even asymptotically

hyperbolic metrics upon changing the smooth structure at the boundary. We digress to

formulate the notion of an even structure on a manifold with boundary, which underlies this

equivalence.

Set Rn+1
+ = {(ρ, s) : ρ ≥ 0, s ∈ Rn}. View Rn ⊂ Rn+1

+ as the subset ρ = 0.

Definition 1.1.1. Let U ⊂ Rn+1
+ be open. Let f : U → R be smooth. f is said to be even

(resp. odd) if either:

1. U ∩ Rn = ∅, or

2. U ∩Rn 6= ∅ and the Taylor expansion of f at each point of U ∩Rn has only even (resp.

odd) terms in ρ.

It is equivalent to say that f is even (resp. odd) if there is a smooth function u so that

f(ρ, s) = u(ρ2, s) (resp. f(ρ, s) = ρ u(ρ2, s)). A smooth map ϕ : U → Rn+1
+ is said to be even

if it is of the form ϕ(ρ, s) = (ρ′, s′), where ρ′ is odd and each component of s′ is even.

Definition 1.1.2. Let (M,∂M) be a manifold with boundary, with atlas {(Uα, ϕα)}α∈A. Let

{(Uα, ϕα)}α∈Ã be a subatlas of {(Uα, ϕα)}α∈A corresponding to a subset Ã ⊂ A. We say that

{(Uα, ϕα)}α∈Ã defines an even structure on (M,∂M) subordinate to its smooth structure if

the transition map

ϕα2 ◦ ϕ−1
α1

: ϕα1(Uα1 ∩ Uα2)→ ϕα2(Uα1 ∩ Uα2)

is even for all α1, α2 ∈ Ã. The even structure is defined to be the maximal atlas containing

{(Uα, ϕα)}α∈Ã for which all transition maps are even.

Remark 1.1.3. Since {(Uα, ϕα)}α∈Ã is in particular an atlas for the smooth structure deter-

mined by {(Uα, ϕα)}α∈A, the even structure determines the smooth structure with respect to

which it is subordinate. So there is really no need to begin with the original smooth structure.

Nevertheless, we will usually have the smooth structure to start with and this language is
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appropriately suggestive. There are many different even structures subordinate to a given

smooth structure.

A diffeomorphism for some ε > 0 between a collar neighborhood of ∂M in M and

[0, ε)×∂M induces an even structure on (M,∂M). In fact, an atlas for ∂M induces an atlas

for [0, ε)× ∂M whose transition maps are the identity in the ρ factor and independent of ρ

in the ∂M factor.

If (M,∂M) is a manifold with boundary with subordinate even structure, it is invariantly

defined to say that a function f on M is even: f ◦ϕ−1
α is required to be even on Rn+1

+ for all

charts (Uα, ϕα) in the even structure. Likewise for odd functions. Conversely, knowledge of

the even and odd functions on (M,∂M) determines the subordinate even structure.

As an aside, we comment that if (M,∂M) is a manifold with boundary, there is a nat-

ural one-to-one correspondence between smooth doubles of (M,∂M) and subordinate even

structures. Recall that a smooth double of (M,∂M) is a choice of smooth manifold struc-

ture on the topological double 2M = (M t M)/∂M such that the inclusions M → 2M

are diffeomorphisms onto their range and such that the natural reflection 2M → 2M is a

diffeomorphism. The even (resp. odd) functions on (M,∂M) are determined by the double

by the requirement that their reflection-invariant (resp. anti-invariant) extension to 2M is

smooth.

Denote by S : Rn+1
+ → Rn+1

+ the squaring map

S(ρ, s) = (ρ2, s).

Let (M,∂M) be a manifold with boundary and let {(Uα, ϕα)}α∈Ã define an even structure on

(M,∂M) subordinate to its smooth structure. We construct another manifold with boundary

(M e, ∂M e) as follows. Set M e = M as topological spaces. Define

ψα = S ◦ ϕα, α ∈ Ã.

If α1, α2 ∈ Ã, then

(ϕα2 ◦ ϕ−1
α1

)(ρ, s) = (ρ a(ρ, s), s′(ρ, s)),
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where a and the components of s′ are even. Now ψα2 ◦ ψ−1
α1

= S ◦ (ϕα2 ◦ ϕ−1
α1

) ◦ S−1. Hence

(ψα2 ◦ ψ−1
α1

)(r, s) =
(
S ◦ (ϕα2 ◦ ϕ−1

α1
)
)
(
√
r, s)

=S
(√

r a(
√
r, s), s′(

√
r, s)

)
=
(
ra(
√
r, s)2, s′(

√
r, s)

)
.

Since a and the components of s′ are even, it follows that ψα2 ◦ ψ−1
α1

is smooth. Hence the

charts {(Uα, ψα)}α∈Ã define a manifold with boundary structure on the topological space M ,

which we denote (M e, ∂M e). As topological spaces we have M = M e. On the interior, the

identity I : M → Me is a diffeomorphism. Since ψα ◦ ϕ−1
α = S is smooth, it follows that

I : M → M e is smooth. But I−1 : M e → M is not smooth since in the charts ψα, ϕα,

its first component is the function
√
r on Rn+1

+ . The process of passing from (M,∂M) with

its subordinate even structure to (M e, ∂M e) could be called “introducing r = ρ2 as a new

defining function”.

Next consider the inverse process of “introducing ρ =
√
r as a new defining function”.

Let (N, ∂N) be any manifold with boundary. We construct another manifold with boundary

(M,∂M) with subordinate even structure, such that (N, ∂N) equals (M e, ∂M e) as manifolds

with boundary. To do so, let {(Uα, ψα)}α∈A be an atlas for (N, ∂N). Take M = N as

topological spaces. Use as charts on M the maps ϕα = S−1 ◦ ψα. Now

(ψα2 ◦ ψ−1
α1

)(r, s) = (rb(r, s), s′(r, s))

where b and s′ are smooth. Calculating the compositions as above gives

(ϕα2 ◦ ϕ−1
α1

)(ρ, s) =
(
ρ
√
b(ρ2, s), s′(ρ2, s)

)
.

Since b(0, s) 6= 0, this is an even diffeomorphism. The atlas {(Uα, ϕα)}α∈A thus defines the

desired manifold with boundary (M,∂M) with subordinate even structure. In this case the

subatlas Ã equals A.

Suppose now that g is an AH metric on the interior M of a compact manifold with

boundary (M,∂M) with a subordinate even structure. In the context of this discussion it is
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natural to define g to be even relative to the chosen even structure if in coordinates (ρ, s) in

the even structure it has the form

g = ρ−2
(
g00dρ

2 + 2g0αdρds
α + gαβds

αdsβ
)

(1.1.3)

with g00, gαβ even and g0α odd. The choice of a representative h for the conformal infinity

induces a diffeomorphism between [0, ε)×∂M and a collar neighborhood of ∂M with respect

to which g has the form (0.0.2) with h0 = h. By analyzing the construction of the normal

form in [GL91], it is not hard to see that this diffeomorphism putting g into normal form

is even relative to the coordinates (ρ, s) and the even structure determined by the product

[0, ε)× ∂M (see the proof of [Gui05, Lemma 2.1] for the special case when (1.1.3) is already

in normal form relative to another representative). It follows that g is even as defined in the

introduction and that g uniquely determines the even structure with respect to which it is

even. In the other direction, an even AH metric in the sense of the introduction is clearly

even with respect to the even structure determined by any of its normal forms. Thus an

AH metric g is even in the sense of the introduction if and only if it is even relative to some

even structure subordinate to the smooth structure on (M,∂M), and this even structure is

uniquely determined by g.

If g is an even AH metric, we can consider the smooth manifold with boundary (M e, ∂M e)

obtained from the even structure determined by g upon introducing r = ρ2 as a new boundary

defining function. Since I−1 : Me →M is a diffeomorphism, eg := (I−1)∗g is a metric on Me.

We claim that eg is projectively compact relative to the smooth structure on (M e, ∂M e). In

fact, if g has the form (0.0.2) on [0, ε)× ∂M with hρ even in ρ, then

eg =
dr2

4r2
+
kr
r
, (1.1.4)

where kr = h√r is a one-parameter family of metrics on ∂M e which is smooth in r. Thus eg

is projectively compact. Conversely, a projectively compact metric relative to (M e, ∂M e) is

an even AH metric when viewed relative to (M,∂M).

In summary, the class of even asymptotically hyperbolic metrics on the interior of a

manifold with boundary (M,∂M) with subordinate even structure is the same as the class
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of projectively compact metrics in the interior of (M e, ∂M e). The distinction is just a matter

of which smooth structure one chooses to use at infinity. The smooth structures are related

by introducing r = ρ2 as a new boundary defining function.

1.2 Local Injectivity for Even Metrics

Let (M,∂M) be a manifold with boundary and g an even AH metric on M . As described

in Section 1.1, the associated metric eg obtained by introducing r = ρ2 as a new boundary

defining function is projectively compact. In particular, for any defining function r for ∂M e,

the connection ∇̂ defined by (1.1.2) is smooth up to ∂M e. We will reduce analysis of the

local X-ray transform of g to that for ∇̂.

Lemma 1.2.1. ∂M e is strictly convex with respect to ∇̂.

Proof. Recall that this means that if r is a defining function for ∂M e with r > 0 in Me

and if γ̂ is a nonconstant geodesic of ∇̂ such that r(γ̂(0)) = 0 and dr
(
γ̂ ′(0)

)
= 0, then

∂2
τ (r ◦ γ̂)|τ=0 < 0. Write g in normal form (0.0.2) relative to a conformal representative h on

∂M , so that eg has the form (1.1.4) on Me. Letting Γ̂kij (resp. eΓkij) denote the Christoffel

symbols of ∇̂ (resp. the Christoffel symbols of the Levi-Civita connection e∇ of eg) an easy

calculation (see (1.3.1) below) shows that eΓ0
αβ = 2kαβ = 2hαβ on ∂M e. Since D0

αβ = 0, we

have at τ = 0:

∂2
τ (r ◦ γ̂) = −Γ̂0

ij γ̂
i′ γ̂j ′ = −Γ̂0

αβγ̂
α′ γ̂β ′ = −eΓ0

αβγ̂
α′ γ̂β ′ = −2hαβγ̂

α′ γ̂β ′ < 0.

It will be convenient to embed M e in a smooth compact manifold without boundary M̃

and to extend ∇̂ to a smooth connection on M̃ , also denoted ∇̂. If γ̂ is a geodesic of ∇̂ with

γ̂(0) ∈ M e, set τ±(γ̂) := ± sup{τ ≥ 0 : γ̂(t) ∈ M e for 0 ≤ ±t ≤ τ}. If U ⊂ M e (usually a

small neighborhood of p ∈ ∂M or its closure), we define the set Ω̂U of U-local geodesics of
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∇̂ by

Ω̂U :=
{
γ̂ : |τ±(γ̂)| <∞, |τ+(γ̂)|+ |τ−(γ̂)| > 0, γ̂(t) ∈ U for t ∈ [τ−(γ̂), τ+(γ̂)]

}
.

Here the requirement |τ+(γ̂)|+ |τ−(γ̂)| > 0 excludes geodesics tangent to ∂M e.

If f ∈ C(U), set

Îf(γ̂) =

∫ τ+(γ̂)

τ−(γ̂)

f(γ̂(τ)) dτ, γ̂ ∈ Ω̂U . (1.2.1)

The U -local X-ray transform of f is the collection of all Îf(γ̂), γ̂ ∈ Ω̂U .

Recall that the parametrization of a geodesic of any connection on TMe is determined up

to an affine change τ → aτ+b, a 6= 0. Such a reparametrization changes Îf(γ̂) by multiplica-

tion by a−1. In particular, whether or not Îf(γ̂) = 0 is independent of the parametrization.

It suffices to restrict attention to geodesics whose parametrization satisfies a normalization

condition. For instance, in the next section we fix a background metric g0 and require that

|γ̂′(0)|g0 = 1.

Next we relate I and Î. This involves relating objects on M with objects on Me. Since

I : M → Me is the identity map, this amounts to viewing the same object in a different

smooth structure, i.e. in different coordinates near the boundary. We suppress writing

explicitly the compositions with the charts ψα, ϕα. So the expression of the identity in these

coordinates is I(ρ, s) = (ρ2, s). Likewise, g and eg are related in coordinates by setting

r = ρ2, as in (1.1.4). If f is a function defined on M , we can regard f as a function fe on

Me, related in coordinates by f(ρ, s) = fe(ρ
2, s). If U ⊂M , set Ue = I(U).

If γ(t) is a U -local geodesic for g, it is also a geodesic for eg. Since e∇ is projectively

equivalent to ∇̂, (1.1.1) and (1.1.2) imply that γ̂(τ) := γ(t(τ)) is a geodesic for ∇̂, where

dt/dτ = c
(
r(γ(t(τ))

)−1
. Different choices of c determine different parametrizations; imposi-

tion of a normalization condition on the parametrization as mentioned above provides one

way to specify c for each geodesic. The relation between I and Î follows easily:

If(γ) =

∫ ∞
−∞

f(γ(t)) dt = c

∫ τ+(γ̂)

τ−(γ̂)

(r−1fe)(γ(t(τ))) dτ = cÎ(r−1fe)(γ̂). (1.2.2)
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Section 3.4 of [UV16] shows that if Ue is a sufficiently small open neighborhood of

p ∈ ∂M e, then the Ue-local X-ray transform for a smooth metric extends to a bounded op-

erator on L2(Ue) with target space L2 of a parametrization of the space of Ue-local geodesics

with respect to a suitable measure. The same argument holds in our setting for a smooth

connection such as ∇̂. We will not make explicit the target L2 space since we are only

concerned here with injectivity.

Equation (1.2.2) shows that it is important to understand when r−1fe ∈ L2(Ue). Making

the change of variable r = ρ2 in the integral gives∫
(r−1fe)

2 drds = 2

∫
(ρ−2f)2ρ dρds = 2

∫
(ρ−3/2f)2 dρds.

Thus r−1fe ∈ L2(Ue, drds) if and only if f ∈ ρ3/2L2(U, dρds). In particular, If(γ) =

cÎ(r−1fe)(γ̂) provides a definition of If for f ∈ ρ3/2L2(U, dvg) consistent with its usual

definition.

The main result of [UV16] is local injectivity of the geodesic X-ray transform for a smooth

metric on a manifold with strictly convex boundary of dimension at least 3. However, the

proof applies just as well for the X-ray transform for a smooth connection such as ∇̂. In

particular, the construction in the main text of the cutoff function χ for which the boundary

principal symbol is elliptic is also valid for a connection since the right-hand side of the

geodesic equation γk ′′ = −Γkijγ
i′γj ′ is a quadratic polynomial in γ′. We do not need the

extension of Zhou discussed in the appendix of [UV16], although that more general result

applies as well. The main result of [UV16] transferred to our setting is as follows.

Theorem 1.2.2. [UV16] Suppose that M e has dimension at least 3 and let p ∈ ∂M e. Every

neighborhood of p in M e contains a neighborhood Ue of p so that the Ue-local X-ray transform

of ∇̂ is injective on L2(Ue).

Proof of Theorem 1 for g even. The relation (1.2.2) shows that f ∈ ρ3/2L2(U, dvg) is in the

kernel of the U -local transform for g if and only if r−1fe ∈ L2(Ue) is in the kernel of the Ue-

local transform for ∇̂. Thus for g even, Theorem 1 follows immediately from Theorem 1.2.2.
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1.3 Connections Associated to AH Metrics Even mod O(ρN)

If the AH metric g in (0.0.2) is not even, then the even structure on (M,∂M) determined

by a normal form for g depends on the choice of normal form. We fix one such normal form

and thus the even structure which it determines. We then construct (M e, ∂M e) as above by

introducing r = ρ2 as a new boundary defining function. The metric eg would be projectively

compact except that the corresponding one-parameter family kr = h√r in (1.1.4) is no longer

smooth: it has an expansion in powers of
√
r. The connection ∇̂ defined by (1.1.2) involves

first derivatives of kr. As already discussed in the Introduction, assuming that g is even mod

O(ρ5) suffices to guarantee that ∇̂ is Lipschitz continuous, and, in fact, that it extends to

be C1 up to ∂M e, though not necessarily C2. However, near ∂M e, ∇̂ can be viewed as a

perturbation of a smooth connection ∇, which we proceed to describe.

Straightforward calculation from (1.1.4) shows that the Christoffel symbols of the con-

nection ∇̂ defined by (1.1.2) are given by:

Γ̂0
ij =

0 0

0 2(kαβ − r∂rkαβ)


Γ̂γij =

 0 1
2
kγδ∂rkδβ

1
2
kγδ∂rkαδ Γγαβ

 ,

(1.3.1)

where Γγαβ denotes the Christoffel symbols of kr with r fixed. If g is even mod O(rN) with

N odd, then k = k(1) + rN/2k(2) with k(1), k(2) smooth. It follows that all Γ̂kij have the form

Γ̂kij = Γ
k

ij + rN/2−1Bk
ij

with Γ
k

ij, B
k
ij smooth up to ∂M e. Denote by ∇ the smooth connection with Christoffel

symbols Γ
k

ij. Recall that we have chosen a closed manifold M̃ containing M e. Choose some

smooth extension of ∇ to a neighborhood of M e, also denoted ∇. Then extend Γ̂ by

Γ̂kij = Γ
k

ij + rN/2−1H(r)Bk
ij (1.3.2)

where H(r) is the Heaviside function. The extended connection ∇̂ is then C(N−3)/2.
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It is an important fact for our analysis that the special structure of the connection ∇̂

has as a consequence that its exponential map is more regular than one would expect. We

consider the exponential map in the form êxp : TM̃ → M̃ × M̃ , defined by êxp(z, v) =

(z, ϕ̂(1, z, v)), where t → ϕ̂(t, z, v) is the geodesic with ϕ̂(0, z, v) = z, ϕ̂ ′(0, z, v) = v. Since

∇̂ is C(N−3)/2 and N ≥ 5, usual ODE theory implies that êxp is a C(N−3)/2 diffeomorphism

from a neighborhood of the zero section onto its image. In fact, it has one more degree of

differentiability. We formulate the result in terms of the inverse exponential map since that

is how we will use it.

Lemma 1.3.1. Let ∇̂ be the C(N−3)/2 connection defined by (1.3.2), where N ≥ 5 is an odd

integer. Then êxp−1 is C(N−1)/2 in a neighborhood in M̃ ×M̃ of the diagonal in ∂M e×∂M e.

Proof. It suffices to show that TM̃ 3 (z, v) → ϕ̂(1, z, v) ∈ M̃ is C(N−1)/2 near (z, 0) for

z ∈ ∂M e. Work in coordinates (r, s) for z with respect to which eg is in normal form (1.1.4).

Set z = (z0, zα) = (r, sα). For v use induced coordinates v = (v0, vα) with v = v0∂r+vα∂sα =

vi∂zi and set w = (z, v). Write the flow as ϕ̂(t, w) = (z̃(t, w), ṽ(t, w)). The geodesic equations

are:

(z̃ k)′ = ṽ k, (ṽ k)′ = −Γ̂kij(z̃)ṽ iṽ j. (1.3.3)

Observe from (1.3.1) that all Γ̂kij are C(N−1)/2 except for Γ̂γ0α = Γ̂γα0. So the right-hand sides

of all equations in (1.3.3) are C(N−1)/2 except for the equation for (ṽ γ)′. By (1.3.1), (1.3.2),

this equation has the form

(ṽ γ)′ = Aγij(z̃)ṽ iṽ j − 2r̃N/2−1H(r̃)Bγ
0β(z̃)ṽ 0ṽ β (1.3.4)

with Aγij of regularity C(N−1)/2 and Bγ
0β smooth. Using r̃ ′ = ṽ 0, write

−2r̃N/2−1H(r̃)Bγ
0β(z̃)ṽ 0ṽ β =− 4

N

(
r̃N/2H(r̃)

)′
Bγ

0β(z̃) ṽ β

=− 4

N

(
r̃N/2H(r̃)Bγ

0β(z̃) ṽ β
)′

+
4

N
r̃N/2H(r̃)

(
Bγ

0β,k(z̃) ṽ kṽ β +Bγ
0β(z̃) (ṽ β)′

)
=− 4

N

(
r̃N/2H(r̃)Bγ

0β(z̃) ṽ β
)′

+
4

N
r̃N/2H(r̃)Cγ

ij(z̃)ṽ iṽ j,
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where for the last equality we have used (1.3.3) for (ṽ β)′, so that

Cγ
ij(z̃)ṽ iṽ j = Bγ

0β,k(z̃) ṽ kṽ β −Bγ
0β(z̃)Γ̂βij(z̃)ṽiṽj.

Note that r̃N/2H(r̃)Cγ
ij(z̃)ṽ iṽ j is C(N−1)/2.

Therefore (1.3.4) can be rewritten in the form(
vγ +

4

N
r̃N/2H(r̃)Bγ

0β(z̃) ṽ β
)′

=
(
Aγij(z̃) +

4

N
r̃N/2H(r̃)Cγ

ij(z̃)
)
ṽ iṽ j. (1.3.5)

Now the linear transformation ṽ 7→ b̃ = L(z̃)ṽ, where b̃ γ = ṽ γ + 4
N
r̃N/2H(r̃)Bγ

0β(z̃) ṽ β, is of

class C(N−1)/2 in (z̃, ṽ) and is invertible for r̃ small. Replacing (1.3.4) by (1.3.5) in (1.3.3)

and setting ṽ = L−1(z̃)̃b throughout, we obtain a system of ODE of the form(
z̃, ṽ 0, b̃

)′
= F

(
z̃, ṽ 0, b̃

)
,

where F is C(N−1)/2. It follows that the map (t, z, v) 7→ ϕ̂(t, z, v) is of class C(N−1)/2 upon

setting b̃ γ = Lγβ(z̃)ṽ β.

Lemma 1.2.1 (the strict convexity of ∂M e) holds for both ∇̂ and ∇ if g is even mod

O(ρN) with N ≥ 5 odd, with the same proof as before. We define the sets Ω̂U , ΩU of U -

local geodesics for ∇̂ and ∇ the same way as before. It will be useful to have a common

parametrization for the sets of geodesics of ∇̂ and ∇. For this purpose, fix a background

metric g0 on M̃ . Let S0M̃ denote the unit sphere bundle of g0. For v ∈ S0M̃ , denote by γ̂v,

(resp. γv) the geodesic for ∇̂ (resp. ∇) with initial vector v. We define the U -local X-ray

transforms for ∇̂ and ∇ just as in (1.2.1), except now we view them as functions on the

subsets of S0M̃ corresponding to Ω̂U , ΩU :

Îf(v) =

∫ τ+(γ̂v)

τ−(γ̂v)

f(γ̂v(τ)) dτ

and similarly for If(v). Sometimes we will use the notation If(v) generically for Îf(v)

or If(v), or, for that matter, for the U -local X-ray transform for any C1 connection on a

manifold with strictly convex boundary. No confusion will arise with the notation If(γ)

from Section 1.2 for the X-ray transform for the AH metric g, since we will not be dealing

with g again except implicitly in the isolated instance where we deduce Theorem 1.
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1.4 Stability and Perturbation Estimates

We continue to work with the connections ∇̂ and ∇ obtained from an AH metric even mod

O(ρN) with N ≥ 5. From now on it will always be assumed that the dimension of the

manifold M is at least 3. Since ∇ is smooth and ∂M e is strictly convex with respect to

it, Theorem 1.2.2 (local injectivity) holds also for ∇. As mentioned in the Introduction,

in order to deduce local injectivity for ∇̂, the stability estimate derived in [UV16] for the

microlocalized normal operator Aχ,η,σ will be needed. This estimate is formulated in terms

of scattering Sobolev spaces. In this section we review those spaces, the construction of

the microlocalized normal operator, and the stability estimate proved in [UV16]. Then we

formulate our main perturbation estimate (Proposition 1.4.6) and show how Theorem 1

follows from it. Proposition 1.4.6 will be proved in Section 1.5. In this section we work

almost entirely on M e and its extension M̃ (with the exception of the very last proof), so

we will not be using the subscript e for its various subsets to avoid cluttering the notation.

We define polynomially weighted scattering Sobolev spaces on a compact manifold with

boundary (X, ∂X) with dimX = n + 1. Let x be a boundary defining function for X. The

space of scattering vector fields, denoted by Vsc(X), consists of the smooth vector fields on

X that are a product of x and a smooth vector field tangent to ∂X. This means that if (x, y)

are coordinates near p ∈ ∂X, any element of Vsc(X) can be written as a linear combination

over C∞(X) of the vector fields x2∂x, x∂yα , α = 1, . . . , n. If k ∈ N0 and β ∈ R define

Hk,β
sc (X) = {u ∈ xβL2(X) : x−βV1 . . . Vmu ∈ L2(X) for Vj ∈ Vsc and 0 ≤ m ≤ k};

here L2 is defined using a smooth measure on X 1. Note that H0,β
sc (X) = xβL2(X). For

s ≥ 0, Hs,β
sc (X) can be defined by interpolation and for s < 0 by duality, though we will not

need this. Upon fixing N0 smooth vector fields V1, . . . , VN0 such that any element of Vsc(X)

can be written locally as a linear combination over C∞(X) of a subset of them, one may

1Our notation slightly differs from that of [UV16] in that we use a smooth measure rather the scattering

measure x−(dimX+1)dxdy to define our base L2 space. The spaces here and in [UV16] are the same up to
shifting the weight by (dimX + 1)/2.
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define a norm on Hk,β
sc (X) by letting

‖u‖2

Hk,β
sc (X)

=
k∑

m=0

∑
ij∈{1,...,N0}

‖x−βVi1 . . . Vimu‖2
L2(X). (1.4.1)

If U ⊂ X is open then Hk,β
sc (U) will consist of distributions of the form u

∣∣
U

, where u ∈

Hk,β
sc

(
X
)
; the corresponding norm will be the same as (1.4.1) with the exception of replacing

‖ · ‖L2(X) by ‖ · ‖L2(U).

We next review the arguments and results from [UV16] that we will need, starting with

the construction of the artificial boundary mentioned in the Introduction.

Lemma 1.4.1 ([UV16], Section 3.1). Let p ∈ ∂M e and ∇ be a C1 connection with respect

to which ∂M e is strictly convex. There exists a smooth function x̂ in a neighborhood U of p

in M̃ with the properties:

1. x̂(p) = 0

2. dx̂(p) = −dr(p)

3. Setting xη := x̂ + η, for any neighborhood Õ of p in M̃ there exists an η0 such that

Uη := {r ≥ 0} ∩ {xη ≥ 0} ⊂ Õ for η ≤ η0

4. For η near 0 (positive or negative) the set Xη := {x̂ > −η} = {xη > 0} ⊂ M̃ has

strictly concave boundary with respect to ∇ locally near p. 2

Now let g0 be the Riemannian metric on M̃ chosen at the end of Section 1.3. By Property

2 in Lemma 1.4.1 we can assume that in U we have dx̂ 6≡ 0. Hence for each sufficiently small

η (upon appropriately shrinking U if necessary) we can use the flow ψ : R × U → M̃ of

grad x̂
| grad x̂|2

g0
= gradxη
| gradxη |2

g0
flowing from ∂Xη to identify a collar neighborhood of ∂Xη in Xη with

[0, δ0)xη × ∂Xη for a small fixed δ0. By taking 0 ≤ η < δ0 we can always arrange that

2Recall that this means that for any ∇-geodesic γ(t) with xη(γ(0)) = 0 and dxη(γ′(0)) = 0 one has
d2

dt2

∣∣
t=0

xη ◦ γ(t) > 0.
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p ∈ [0, δ0)xη × ∂Xη. Upon shrinking ∂Xη if necessary we can assume that ψ(η, ·) : ∂Xη →

∂X0 =: Yp is a diffeomorphism for all sufficiently small η. We use this diffeomorphism to

finally identify a collar neighborhood of ∂Xη in Xη with [0, δ0)xη × Yp. In terms of this

identification, for fixed η the metric g0 takes the form Fdx2
η + gxη on Xη locally near the

boundary, where F = |dxη|−2
g0 is smooth and non-vanishing and for a fixed η, gxη is a 1-

parameter family of metrics on Yp (thus if one lets η vary then gxη depends on two parameters:

η fixes the manifold with boundary (Xη, ∂Xη) by determining the boundary defining function

xη, and then the value of xη at a given point determines the metric). Moreover, vectors in

S0
zM̃ , z ∈ Xη, can be written in terms of the identification above as v = λ∂xη + ω, where

ω ∈ TYp (of course not necessarily of unit length, so our setup slightly differs from the one

in [UV16], see Remark 1.4.4 below).

In order to show local injectivity of the X-ray transform, one needs a description of

geodesics that stay within a given neighborhood:

Lemma 1.4.2 ([UV16], Section 3.2). Let ∇ be a C1 connection with respect to which M e

has strictly convex boundary. There exist constants C̃ > 0, 0 < δ1 < δ2, c0 > 0 and η0 > 0,

and neighborhood Zp of p in Yp, such that if 0 ≤ η < η0 and if γ(t) is a ∇-geodesic with

initial position z = (x, y) ∈ [0, c0]xη × Zp ⊂ Xη and velocity v = (λ, ω) ∈ S0
zM̃ satisfying∣∣∣∣ λ

|ω|g0

∣∣∣∣ ≤ C̃
√
x (1.4.2)

then one has xη ◦ γ(t) ≥ 0 for |t| ≤ δ2 and xη ◦ γ(t) ≥ c0 for |t| ≥ δ1.

By taking η0 << c0 in Lemma 1.4.2 and by Lemma 1.4.1 one can always assume that a

neighborhood of Uη in Xη is contained in [0, c0]xη × Zp, and we will henceforth assume that

this is the case. Now let δ1 and ∇ be as in Lemma 1.4.2 and let exp : TM̃ → M̃ be the

exponential map of∇. If v ∈ S0
zM̃ satisfies the assumptions of the lemma and f is continuous

and supported in [0, c0)xη×Zp, we have If(v) =
∫ δ1
−δ1 f(exp(tv))dt, so for all such v and f one

can define the X-ray transform by integrating only over a fixed finite interval. The authors of

[UV16] consider If only on vectors v = (λ, ω) ∈ S0
zM̃ satisfying a stronger condition, namely
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that for some positive constant C2 one has |λ|
|ω|g0
≤ C2x with z = (x, y) ∈ [0, c0]xη × Zp for η

sufficiently small, and construct a microlocalized normal operator for I. Specifically, with f

as before and χ ∈ C∞c (R) with χ ≥ 0 and χ(0) = 1, let

Aχ,ηf(z) :=

∫
S0
zM̃

χ

(
λ

|ω|g0x

)
If(v)dµg0 , z = (x, y) ∈ [0, c0]xη × Zp, (1.4.3)

where dµg0 is the measure induced on S0
zM̃ by g0|TzM̃ . Note that for any C2, c0 can be chosen

sufficiently small that (1.4.2) is automatically satisfied in [0, c0]xη × Zp. The constant C2 is

fixed when χ ∈ C∞c (R) is chosen (see Proposition 1.4.3 below), and then c0, η0 can be chosen

so that the integrand in (1.4.3) is only supported on vectors corresponding to geodesics in

ΩUη . We also mention that for such choices of constants it follows from the proof of Lemma

1.4.2 that if γ is a geodesic with initial position z = (x, y) ∈ [0, c0]xη ×Zp and initial velocity

v = (λ, ω) such that χ
(

λ
|ω|g0x

)
6= 0, then there exists C > 0 such that for any |t| ≤ δ2 and

0 ≤ η < η0

xη ◦ γ(t) ≥ x− C2x2. (1.4.4)

Finally for σ > 0 define the conjugated microlocalized normal operator:

Aχ,η,σ := x−2
η e−σ/xηAχ,ηe

σ/xη .

We denote this operator in case ∇ = ∇ (resp. ∇̂) by Aχ,η,σ (resp. Âχ,η,σ). In the case of

the smooth connection ∇ on M e, for which ∂M e is strictly convex, and in dimension ≥ 3, it

was proved in [UV16, Proposition 3.3] that Aχ,η,σ are scattering pseudodifferential operators

(in the notation there, Aχ,η,σ ∈ Ψ−1,0
sc (Xη)). This implies that they also act on scattering

Sobolev spaces. The following Proposition contains the stability estimate we will need in

terms of such spaces. We set ψt(·) = ψ(t, ·) : U → M̃ .

Proposition 1.4.3 ([UV16], Section 3.7). Suppose as before that n + 1 ≥ 3 and let σ > 0.

There exist χ0 ∈ C∞c (R), χ0 ≥ 0, χ0(0) = 1, such that for any sufficiently small neighborhood

O of p ∈ ∂M e in X there exist η0 > 0 and C0 > 0 with the property that for 0 ≤ η ≤ η0 one

has Uη ⊂ Oη := ψ−η(O) ⊂ Xη, and the estimate

‖u‖xβL2(Uη) ≤ C0‖Aχ0,η,σu‖H1,β
sc (Oη), β ∈ R, (1.4.5)
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Figure 1.1: The level sets of x̂.

where u ∈ xβL2(Uη) is extended by 0 outside Uη. Here the Sobolev spaces on subsets of Xη

are defined by pulling back by ψη the corresponding spaces on subsets of X0.

Remark 1.4.4. The estimate stated in [UV16, Section 3.7] is of the form

‖u‖Hs,β
sc (Xη) ≤ C0‖Aχ0,η,σu‖Hs+1,β

sc (Xη), s ≥ 0, suppu ⊂ Uη (1.4.6)

For s = 0 the space on the left is exactly xβL2(Uη). On the other hand, the upper bound in

(1.4.6) can be replaced by the one in (1.4.5) provided suppu ⊂ Uη, since the Schwartz kernel

of the operators Aχ0,η,σ has been localized in both factors near Uη, see for instance [UV16,

Remark 3.2].

We also remark that the way we construct the operators Aχ,η differs slightly from the setup

of [UV16], since we parametrize geodesics by their initial velocities normalized so that they

have unit length with respect to the metric g0, and average the transform over them using

the measure induced by g0 on the fibers of S0M̃ . In [UV16] the geodesics are parametrized

by writing their initial velocities as (λ, ω) ∈ R × Sn−1 using coordinates, and the measure

used is dλdω, where dω is the standard measure on the unit sphere Sn−1. However this

difference doesn’t affect the analysis, as already remarked there (see Remark 3.1 and the

proof of Proposition 3.3).
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Remark 1.4.5. As remarked in [UV16, Lemma 3.6], Proposition 1.4.3 holds for any χ0

sufficiently close to a specific Gaussian in the topology of Schwartz space. In particular, χ0

can be taken to be even, and from now on we assume that this is the case, since this simplifies

the notation.

Let χ0 be as in Proposition 1.4.3, chosen to be even. Let σ > 0 be fixed. Define

Eη,σ := Aχ0,η,σ − Âχ0,η,σ

In Section 1.5.2 we will prove the following key proposition:

Proposition 1.4.6. Let σ > 0. Provided O is a sufficiently small neighborhood of p ∈ ∂Me

in X0, for each δ > 0 there exits η0 > 0 with the property that if 0 ≤ η < η0 one has

Uη ⊂⊂ Oη := ψ−η(O) and

‖Eη,σu‖H1,0
sc (Oη) ≤ δ‖u‖L2(Uη)

for all u ∈ L2(Uη) extended by 0 outside Uη.

Remark 1.4.7. In Proposition 1.4.6 one does not need to assume that n + 1 ≥ 3, however

unless this is the case Proposition 1.4.3 does not hold and the proof of Corollary 1.4.8 below

breaks.

An immediate consequence of Proposition 1.4.6 is the following:

Corollary 1.4.8. With notations as before and assuming that dim(M e) ≥ 3, there exists

η0 > 0 such that for 0 < η < η0 the transform f 7→ Îf
∣∣
Ω̂Uη

is injective on L2(Uη).

Proof. Fix σ > 0 and let χ0 be as in Proposition 1.4.3, even. Then take O sufficiently

small, as in Propositions 1.4.3 and 1.4.6, and let C0 and η0 be according to the former,

corresponding to O. By Proposition 1.4.6, upon shrinking η0 if necessary, for 0 ≤ η < η0 we

have

‖Eη,σu‖H1,0
sc (Oη) ≤ 1/(2C0)‖u‖L2(Uη)



34

for u ∈ L2(Uη) extended by 0 elsewhere. Since Aχ0,η,σ = Âχ0,η,σ + Eη,σ, if u ∈ L2(Uη) one

has, for 0 ≤ η < η0

‖u‖L2(Uη) ≤ C0‖Aχ0,η,σu‖H1,0
sc (Oη) ≤ C0‖Âχ0,η,σu‖H1,0

sc (Oη) + C0‖Eη,σu‖H1,0
sc (Oη)

≤C0‖Âχ0,η,σu‖H1,0
sc (Oη) + 1/2‖u‖L2(Uη) ⇒ ‖u‖L2(Uη) ≤ 2C0‖Âχ0,η,σu‖H1,0

sc (Oη).

This implies injectivity of Âχ0,η,σ on L2(Uη). Using the definition of Âχ0,η,σ, the local X-ray

transform f 7→ Îf
∣∣
Ω̂Uη

is injective on eσ/xηL2(Uη) ⊃ L2(Uη).

Proof of Theorem 1. The proof presented in Section 1.2 for the even case applies here verba-

tim, with the only difference that injectivity of the Ue-local transform for ∇̂ on L2(Ue) now

follows from Corollary 1.4.8.

1.5 Analysis of Kernels

The goal of this section is to prove Proposition 1.4.6. As mentioned in the Introduction, the

proof resembles the one for the Schur criterion stating that an operator is bounded on L2

if its Schwartz kernel is uniformly L1 in each variable separately (see e.g. [Sai91, Lemma

3.7]). Hence it is necessary to understand well the properties of the kernels of Aχ0,η,σ and

Âχ0,η,σ. The fine behavior of these kernels is perhaps best described in terms of the scattering

blow-up of the product X
2
. We begin by describing blow-ups in general and subsequently

the scattering blow-up, in Section 1.5.1. We then analyze the kernels on it in Section 1.5.2.

1.5.1 Blown-Up Spaces

In this section we describe the scattering blow-up of the product X
2
, where X is a compact

manifold with boundary. A reference for blow-ups in general is [Mel]; specifically for the

scattering blow-up see [Mel94]. Let X be an n-dimensional compact manifold with corners

and Z a p-submanifold of codimension at least 2 (see [Mel, Definition 1.7.4]); this means

that Z is a submanifold of X with the property that for each p ∈ Z there exists a coordinate
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chart (U,ϕ) for X centered at p and integers 0 ≤ k ≤ n, 0 ≤ r ≤ k, 0 ≤ s ≤ n − k with

r + s ≥ 2 such that

ϕ(Z ∩ U) = {(x, y) ∈ Rk

+ × Rn−k : x1 = · · · = xr = y1 = · · · = ys = 0}, (1.5.1)

where if r = 0 or s = 0 we mean that none of the xi or yj respectively vanish identically

on ϕ(Z ∩ U). In the case when r = 0 in (1.5.1) (in which case Z is called an interior p-

submanifold), blowing up Z essentially amounts to introducing polar coordinates in terms of

(y1, . . . , ys). Formally, one defines the spherical normal bundle of Z, SN(Z)
π→ Z, with fiber

at p ∈ Z given by SNp(Z) :=
(
(TpX/TpZ)\{0}

)
/R+. Then, it can be shown ([Mel], Sections

5.1-5.3) that the blown up space
[
X;Z

]
:= SN(Z)q (X\Z) admits a smooth structure as a

manifold with corners such the blow down map β :
[
X;Z

]
→ X, given by β

∣∣
X\Z = IdX\Z

and β
∣∣
SN(Z)

= π, becomes smooth with rank dim(Z) + 1 on SN(Z). In the case when Z

is a boundary p-submanifold, meaning that r > 0 in (1.5.1), the spherical normal bundle

is replaced by its inward pointing part, with fiber S+Np(Z) =
(
(T+

p X/TpZ)\{0}
)
/R+ and

the rest of the discussion follows in the same way as for interior p-submanifolds. If P is a

p-submanifold of X that intersects Z, with the property that (P\Z) = P , and β is a blow

down map, then the lift of P is defined as β∗(P ) = β−1(P\Z).

Now let X be a smooth compact manifold with boundary; this implies that X
2

is a

smooth manifold with corners. We will define a number of spaces originating from X
2

after blowing up successively certain p-submanifolds. Following [Mel94], define the b-space

X
2

b :=
[
X

2
; (∂X)2

]
with blow down map β1. We denote by ffb the front face of this blow up.

If ∆b := β−1
1 (∆◦) (where ∆ ⊂ X

2
is the diagonal, which is not a p-submanifold), we let the

scattering product be X2
sc :=

[
X

2

b ; ∂(∆b)
]

and the blow down map be β2 : X
2

sc → X
2

b . Set

βsc = β1◦β2 and let ffsc ⊂ X
2

sc be the front face associated to β2. We finally introduce a third

blown up space obtained from X
2

sc by blowing up the scattering diagonal ∆s := β∗2(∆b). We

denote the new space by X
2

∆s
and the corresponding blow down map by β3; let β∆s := βsc◦β3.

This space is pictured in Figure 1.2. By a result on commutativity of blow-ups (see [Mel,

Section 5.8]), X
2

∆s
is diffeomorphic to

[
[X

2

b ; ∆b], β̃
∗
2(∂∆b)

]
, where β̃2 : [X

2

b ; ∆b] → X
2

b is the
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blow down map. We name the various faces of X2
∆s

as follows:

G10 := β∗3
(
β∗2
(
β∗1
(
∂X ×X

)))
G01 := β∗3

(
β∗2
(
β∗1
(
X × ∂X

)))
G11 := β∗3 (β∗2 (ffb)) G2 := β∗3(ffsc);

finally let G3 be the front face associated with β3. Introducing some more notation, let

p ∈ ∂X and U be a neighborhood of p in X or the closure of one. Then we let by definition

O2
b , O

2
sc and O2

∆s
mean β−1

1 (O2), β−1
sc (O2) and β−1

∆s
(O2) respectively.

Figure 1.2: The scattering product space X
2

∆s
.

The blown up spaces mentioned above are conveniently studied using projective coordi-

nates. Let (x, y) and (x̃, ỹ) be two copies of the same coordinate system in a neighborhood

O of a point p ∈ ∂X, so that (x, y, x̃, ỹ) is a coordinate system for O2 ⊂ X
2
, and change

the dimension convention to dim
(
X
)

= n + 1. Here and for the rest of this section x (and

thus also x̃) is a boundary defining function for ∂X. Then the projective coordinate systems

(s1 = x̃/x, x, y, ỹ) and (s2 = x/x̃, x̃, y, ỹ) are valid in a neighborhood of G01 and G10 respec-

tively and the coordinate functions are smooth away from G10 and G01 respectively (though
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they do not form coordinate systems near G2 and G3 in X
2

∆s
). In terms of the former coor-

dinate system, s1 is a defining function for G01 and x a defining function for G11, whereas in

terms of the latter s2 is a defining function for G10 and x̃ is one for G11. On the other hand,

either by checking directly or by using the commutativity of the blow-up mentioned before,

one sees that a valid coordinate system in a neighborhood of any point near G11 ∩ G2 can be

obtained by appropriately choosing n of the θj below:(
τ =

√
(s1 − 1)2 + |ỹ − y|2, θ =

(s1 − 1, ỹ − y)

τ
, σ =

x

τ
, y

)
. (1.5.2)

In (1.5.2) | · | denotes the Euclidean norm. For instance, letting ε > 0 be small and U±J =

{(X̂, Ŷ ) = (θ0, . . . , θn) ∈ Sn : ±θJ > ε}, J = 0, . . . , n we can cover Sn by the U±J and

use θj, j 6= J as smooth coordinates on UJ
± for each choice of ±. Now note that (X =

(s1 − 1)/x, Y = (ỹ − y)/x, x, y) are valid coordinates on (O2
∆s

)◦, and smooth up to G3 and

G◦2 . Thus one obtains a diffeomorphism T from the interior of O2
∆s

onto an open subset of

Rn+1
+ × [0,∞)× Sn that extends smoothly up to G3 and G◦2 by setting(

x, y, R =
√
X2 + |Y |2, θ = (X̂, Ŷ ) =

(X, Y )

R

)
∈ Rn+1

+ × [0,∞)× Sn. (1.5.3)

Again we can choose coordinates on Sn to obtain coordinate systems on (O2
∆s

)◦, smooth up

to G3 and G◦2 . Note that θ = (θ0, . . . , θn) stands for the same functions in both (1.5.2) and

(1.5.3) and that R is a defining function for G3. Moreover, we note here that that

x01 =
1 + xRX̂

2 + xRX̂
=

s1

1 + s1

, x10 = (2 + xRX̂)−1 =
s2

1 + s2

x11 =
(2 + xRX̂)2

1 +R
=

σ

1 + σ
(2 + τθ0)2,

=
x(1 + s1)2

x+
√

(s1 − 1)2 + |ỹ − y|2
=

x̃(s2 + 1)2

s2
2x̃+

√
(1− s2)2 + s2

2|ỹ − y|2
(1.5.4)

are smooth defining functions for G01, G10 and G11 respectively, each non-vanishing and

smooth up to all other faces.

Via the diffeomorphism T the expression |dx dy dR dω| (where dω is the volume form on

Sn induced by the round metric) pulls back to a smooth global section of the density bundle
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on (O2
∆s

)◦, which is smooth and non-vanishing up to G3 and G◦2 , but not up to the other

boundary faces. We have the following:

Lemma 1.5.1. Via the diffeomorphism T defined by (1.5.3), the expression

(R + 1)−1(2 + xRX̂)n|dx dy dR dω| (1.5.5)

pulls back to a smooth non-vanishing section of the smooth density bundle on O2
∆s

, up to all

boundary faces.

Proof. The claim can be checked via a straightforward computation in local coordinates

smooth up to the various boundary faces in different parts of O2
∆s

. Near G3 and G◦2 (R +

1)−1(2 + xRX̂)n is smooth and non-vanishing, so there is nothing to show there (note that

2 + xRX̂ = s1 + 1 and s1 > 0 in (O2
∆s

)◦). Then we compute

(2 + xRX̂)n

1 +R
|dx dy dR dω| =(2 + τθ0)n

1 + σ
|dτ dy dσ dω| (1.5.6)

=
(s1 + 1)n

(
(s1 − 1)2 + |ỹ − y|2

)−n
2

x+
√

(s1 − 1)2 + |ỹ − y|2
|dx dy ds1 dỹ| (1.5.7)

=
(1 + s2)n

(
(1− s2)2 + s2

2|ỹ − y|2
)−n

2

s2
2x̃+

√
(1− s2)2 + s2

2|ỹ − y|2
|ds2 dy dx̃ dỹ|. (1.5.8)

Then (1.5.6) shows the claim near G11∩G2 and away from the other intersections of boundary

faces, (1.5.7) near G01 and (1.5.8) near G10.

We now record the form that β∗∆s
W̃ , the lift of W̃ , takes in terms of (1.5.3) whenever

W̃ ∈ Vsc(X) is identified with a vector field onX
2

acting on the left factor. Here the lift is well

defined since β∆s : (X
2

∆s
)◦ → X2 \∆ is a diffeomorphism. We work in a neighborhood O2 of

a point (p, p) ∈ ∂∆ where we have coordinates (x, y, x̃, ỹ), as before. Then W̃ is spanned over

C∞ by x2∂x, x∂yα . Those lift via β1 to the vector fields −xs1∂s1 + x2∂x, x∂yα respectively,

in coordinates (x, s1 = x̃/x, y, ỹ). Now we lift those using β2 and find that in terms of

coordinates (x, y,X, Y ) they are given respectively by (−1− 2xX)∂X − xY · ∂Y + x2∂x and

−∂Y + x∂yα . Now blowing up ∆s corresponds to using polar coordinates about (X, Y ) = 0.
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Again consider the sets U±J , J = 0, . . . , n, defined before, for some fixed small ε: on U±J

the functions θj, j 6= J , form a smooth coordinate system. Then check that for each J and

choice of ± there exist smooth functions ajJ,± and bjJ,± on U±J,± such that the vector fields

X̂∂R + R−1
∑n

j 6=J a
j
J,±(θ)∂θj and Ŷ α∂R + R−1

∑
j 6=J b

j
J,±(θ)∂θj are β3-related to ∂X and ∂Y α

respectively. Thus if W̃ ∈ {x2∂x, x∂y} then in the set {(x, y, R, θ) ∈ O×[0,∞)×U±J } we have

β∗∆s
W̃ =

∑
j c

j
J,±(x, y, R, θ)Wj, where Wj belong to either of the two sets {x2∂x, x∂y, ∂R} or

{R−1∂θj , j 6= J} and cjJ,± are smooth and grow at most polynomially fast as R→∞ (though

note that β∗∆s
W̃ is smooth on X

2

∆s
\ G3).

1.5.2 Analysis on blow-ups

In this section we identify the form of the Schwartz kernels of the operators Aχ,η,σ defined

in Section 1.4 (Lemma 1.5.2) and prove two technical lemmas regarding their regularity

and dependence on the parameter η when lifted to the scattering stretched product space

(Lemmas 1.5.3 and 1.5.4). We then use those to analyze the kernel of the difference Eη,σ in

Lemma 1.5.6 and finally its properties to prove Proposition 1.4.6.

Recall that the operators Aχ,η,σ act on functions supported in sets varying with the

parameter η. As in [UV16], it will be convenient to create an auxiliary 1-parameter family

of operators which all act on functions defined on the same space. We use the smooth 1-

parameter family of maps ψη(·), defined in Section 1.4, namely the flow of grad x̂/| grad x̂|2g0 ,

to map diffeomorphically Xη onto X0 (locally in U). For σ > 0, η ≥ 0 and χ as in Section

1.4 define a 1-parameter family of operators by

Ãχ,η,σ := (ψ−η)
∗ ◦ Aχ,η,σ ◦ (ψη)

∗, (1.5.9)

all acting on functions supported in X0 near p. We use the notation Ãχ,η,σ and
˜̂
Aχ,η,σ for

the operators corresponding to ∇ = ∇ and ∇̂. Similarly, for χ0 determined by Proposition

1.4.3 let

Ẽη,σ := Ãχ0,η,σ −
˜̂
Aχ0,η,σ. (1.5.10)

Proposition 1.4.6 immediately reduces to showing the following:
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Let σ > 0. Provided O is a sufficiently small neighborhood p in X0, for every δ > 0 there

exits η0 > 0 with the property that if 0 ≤ η < η0 one has Ũη := ψη(Uη) ⊂⊂ O and

‖Ẽη,σu‖H1,0
sc (O) ≤ δ‖u‖L2(Ũη), (1.5.11)

for all u ∈ L2(Ũη) extended by 0 outside Ũη.

We will now use the product decomposition [0, δ0)x0 × Yp introduced in Section 1.4 to

analyze the Schwartz kernels of (1.5.9) and (1.5.10) on X
2

0. Henceforth we will write g for

the metric g0 which was chosen in Section 1.3 and was used to define A in (1.4.3), and SM̃

for its unit sphere bundle. No confusion will arise with the AH metric g, as it will not appear

again.

Lemma 1.5.2. Suppose ∇ is a connection on TM̃ whose exponential map exp : TM̃ → M̃ is

of class C2 and for which ∂M e is strictly convex. Also let χ ∈ C∞c (R) be even with χ(0) = 1,

χ ≥ 0, and let σ > 0. Let κÃχ,η,σ denote the Schwartz kernel of Aχ,η,σ, viewed as a section of

the smooth density bundle on X
2

0. Then

κÃχ,η,σ =
√
g(z − η)x−2e−σ(1/x−1/x̃)2χ (P (z, z̃, η))

| det(dz̃ exp−1
z−η)(z̃ − η)|

|exp−1
z−η(z̃ − η)|ng

|dzd z̃|,

where P (z, z̃, η) :=
dx0

(
exp−1

z−η(z̃ − η)
)

x
∣∣dy(exp−1

z−η(z̃ − η)
) ∣∣

g

and η = (η, 0), (1.5.12)

for (z, z̃) in a sufficiently small neighborhood of (p, p) written as z = (x, y), z̃ = (x̃, ỹ) in

terms of the product decomposition [0, δ0)x0×Yp and with y, ỹ identical copies of a coordinate

system on Yp centered at p. Here and in what follows
√
g(z − η) =

√
det g(z − η) with the

determinant computed in terms of the coordinates (x, y).

Proof. First examine the kernel of Aχ,η,σ on X
2

η, for fixed η ≥ 0 small. Let f be smooth

and supported in a small neighborhood in Xη of a point in Uη ⊂ Xη. We write z′ = (x′, y),

z̃ ′ = (x̃′, ỹ) in terms of the product decomposition [0, δ0)xη ×Yp on X
2

η with y, ỹ coordinates

on Yp and also v′ = λ′∂x′ + ω′ for vectors in Tz′Xη. Writing dλg for the measure induced by

g on each fiber of TM̃ , compute

Aχ,η,σf(z′) =x′
−2
e−σ/x

′
∫
Sz′Xη

χ

(
λ′

x′|ω′|g

)∫ ∞
−∞

(eσ/xηf)
∣∣
z̃ ′=expz′ (tv

′)
dt dµg
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=x′
−2
e−σ/x

′
∫
Sz′Xη

2χ

(
λ′

x′|ω′|g

)∫ ∞
0

(eσ/xηf)
∣∣
z̃ ′=expz′ (tv

′)
dt dµg

=x′
−2
e−σ/x

′
∫
Tz′Xη

2χ

(
λ′

x′|ω′|g

)
(eσ/xηf)

∣∣
z̃ ′=expz′ (tv

′)

dλg
|v′|ng

=x′
−2
e−σ/x

′
∫
Xη

2χ

(
dxη
(
exp−1

z′ (z̃ ′)
)

x′|dy
(
exp−1

z′ (z̃ ′)
)
|g

)
eσ/x̃

′
f(z̃ ′)

|exp−1
z′ (z̃ ′)|ng

(expz′)∗(dλg).

Recall that by Lemma 1.4.2 the two integrals with respect to t above are in fact over finite

intervals (−δ1, δ1) and [0, δ1), respectively. Moreover, dλg(v
′) =

√
g(z′)|dv′| in terms of

induced fiber coordinates. Finally conjugation by ψη in (1.5.9) corresponds to replacing

(z′, z̃ ′) by (z − η, z̃ − η) in the Schwartz kernel of Aχ,η,σ, where z, z̃ are expressed in terms

of the product decomposition [0, δ0)x0 × Yp on X0. Noting that dxη = dx0 completes the

proof.

In the next two lemmas we use (1.5.12) to analyze the Schwartz kernel of Ãχ,η,σ on
(
X0

)2

∆s

near β−1
∆s

(p, p). Since the proof of Proposition 1.4.6 has been reduced to showing (1.5.11),

from now on the entire analysis will be on X0. We will thus drop the subscript and write

X to mean X0. We will use the product decomposition [0, δ0)x0 × Yp near ∂X introduced

in Section 1.4 in each factor of X. Again we choose coordinates yα on Yp centered at p,

α = 1, . . . , n, and write z = (z0, zα) = (x, yα) and z̃ = (z̃ 0, z̃ α) = (x̃, ỹα) for points in the

left and right factor of X respectively. We will also be using the notations G∗ introduced

in Section 1.5.1 to describe the various boundary faces of X
2

∆s
. In what follows, whenever

we say that a function f vanishes to infinite order at a boundary face of a manifold with

corners, we will mean that if x is a defining function of this boundary face and N0 ∈ N then

x−N0f ∈ L∞ (thus this is purely a statement regarding the growth of f without any mention

of the behavior of its derivatives near x = 0).

Lemma 1.5.3. Let the hypotheses of Lemma 1.5.2 hold and let ν be a section of the smooth

density bundle on X
2

∆s
. For a sufficiently small neighborhood O of p in X there exists η0

depending on O, ∇ and χ such that for the Schwartz kernel κÃχ,η,σ of Ãχ,η,σ computed in
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(1.5.12) one has

β∗∆s
(κÃχ,η,σ) = K∇(·, η) · ν, K∇(·, ·) ∈ C0

(
O2

∆s
× [0, η0)

)
.

Moreover, K∇ ∈ C1
((

(O2
∆s

)◦ ∪ G◦3
)
× [0, η0)

)
, it vanishes to infinite order on faces G10, G11

and G01 and its restriction to G3 is independent of ∇.

Proof. We will lift (1.5.12) to X
2

∆s
and analyze its regularity. We always assume that we are

working in a small enough neighborhood O2 and with small enough η0 that the coordinates

(x, y, x̃, ỹ) are valid, exp−1
z−η(z̃− η) is a C2 diffeomorphism onto its image for (z, z̃) ∈ O2 and

0 ≤ η < η0, and the conclusion of Lemma 1.4.2 holds.

Before we lift (1.5.12) to the stretched product we analyze its various factors on X
2
.

Use Taylor’s Theorem for the function t 7→ exp−1
z−η(z − η + t(z̃ − z)) and write two different

expressions for exp−1
z−η(z̃ − η) in terms of coordinates z = (x, yα) = (z0, zα), α = 1, . . . , n:

dzk(exp−1
z−η(z̃ − η)) =pkj (z, z̃, η)(z̃ − z)j (1.5.13)

=(z̃ − z)k + pkij(z, z̃, η)(z̃ − z)i(z̃ − z)j, where (1.5.14)

pkj (z, z̃, η) :=

∫ 1

0

∂z̃j
(
dzkexp−1

z−η
) ∣∣

z−η+τ(z̃−z)dτ ∈ C
1
(
O2 × [0, η0)

)
,

pkij(z, z̃, η) :=

∫ 1

0

(1− τ)∂z̃iz̃j
(
dzkexp−1

z−η
) ∣∣

z−η+τ(z̃−z)dτ ∈ C
0
(
O2 × [0, η0)

)
,

with

pkj (z, z, η) = δkj and pkij(z, z, η) = 1
2
Γkij(z − η).

Here Γkij denote the connection coefficients of ∇ in coordinates (x, y). Now (1.5.13) and

(1.5.14) can be used to show regularity of the factors of 1.5.12. We have

| det(dz̃ exp−1
z−η)(z̃ − η)| ∈ C1

(
O2 × [0, η0)

)
, | det(dz̃ exp−1

z−η)(z − η)| = 1. (1.5.15)

Using (1.5.13) and the smoothness of the metric g,

|exp−1
z−η(z̃ − η)|2g = Gij(z, z̃, η)(z̃ − z)i(z̃ − z)j, where Gij ∈ C1

(
O2 × [0, η0)

)
,
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Gij(z, z, η) = gij(z − η), Gij positive definite in O2 × [0, η0). (1.5.16)

To analyze P from (1.5.12) write, using (1.5.13) and (1.5.14),

P (z, z̃, η) =
p0
j(z, z̃, η)(z̃ − z)j

x
(
qij(z, z̃, η)(z̃ − z)i(z̃ − z)j

)1/2
,

=
x̃− x+ p0

ij(z, z̃, η)(z̃ − z)i(z̃ − z)j

x
(
|ỹ − y|2g + qijk(z, z̃, η)(z̃ − z)i(z̃ − z)j(z̃ − z)k

)1/2
,

where qij = gαβp
α
i p

β
j ∈ C1

(
O2 × [0, η0)

)
, qijk ∈ C0

(
O2 × [0, η0)

)
.

We now examine the lifts of the various factors of the kernel to O2
∆s

. As explained in

Section 1.5.1, near any point in (O2
∆s

)◦, 2n + 2 of the functions
(
x, y, R =

√
X2 + |Y |2, θ =

(X̂, Ŷ ) = (X, Y )/R
)
, where X = (x̃ − x)/x2, Y = (ỹ − y)/x, form a smooth coordinate

system; moreover, the functions (x, y, R, θ) are smooth up to G◦2 and G3, and x is a defining

function for G2 and R is a defining function for G3. First note that since β∆s is smooth,

(1.5.15) implies that

β∗∆s
(| det(dz̃ exp−1

z−η)(z̃ − η)|) ∈ C1
(
O2

∆s
× [0, η0)

)
and it is identically 1 at G2 and G3. Writing Ẑ = (xX̂, Ŷ ) so that z̃ − z = xRẐ, (1.5.16)

yields

β∗∆s
|exp−1

z−η(z̃ − η)|−ng =x−nR−n
(
Gij(z, z + xRẐ, η)ẐiẐj

)−n/2
=x−nR−n

(
GαβŶ

αŶ β + 2xG0βX̂Ŷ
β + x2G00X̂

2
)−n/2

and we also have

β∗∆s
|dx dy dx̃ dỹ| = xn+2Rn|dx dy dR dω|.

We now pull back χ(P ), writing it in two ways using (1.5.13) and (1.5.14):

β∗∆s
(χ(P )) =χ

 p0
j(z, z + xRẐ, η)Ẑj

x
(
qij(z, z + xRẐ, η)ẐiẐj

)1/2

 (1.5.17)
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=χ

X̂ +R p0
αβŶ

αŶ β + xR
(

2p0
0βX̂Ŷ

β + xp0
00X̂

2
)

(
|Ŷ |2g + xR qijkẐiẐjẐk

)1/2

 , (1.5.18)

where in (1.5.18) the pkij and qijk are all evaluated at (z, z+xRẐ, η). Some caution is required

when the denominator of the arguments approaches 0. At any point in (O2
∆s

)◦ × [0, η0)

the expression β∗∆s
(χ(P )) is C2, since any such point projects via β∆s to a pair of points

away from the diagonal. This implies that if the denominator of P vanishes the numerator

does not, and hence χ(P ) = 0 there. Now suppose we are given q′ = (x′, y′, R′, θ′, η′) ∈

G◦2 ∪ G3 × [0, η0), so either x′ = 0 or R′ = 0. Since |θ| = |(X̂, Ŷ )| = 1, either X̂ or Ŷ

are bounded away from 0. If |Ŷ | ≤ ε for some ε > 0, the numerator of P is bounded

below in absolute value by
√

1− ε2 − CR(ε+ x), therefore the ε can be assumed to be

small enough that in a neighborhood of q′ the numerator is bounded below. This again

guarantees that χ(P ) is continuous at q′ in this case by the compact support of χ. On the

other hand, if |Ŷ | ≥ ε then in a neighborhood of q′ the denominator is bounded away from

0. We conclude that β∗∆s
(χ(P )) extends continuously to (O2

∆s
)◦ ∪ G3 ∪ G◦2 × [0, η0) and, in

fact, it is in C1
(
(O2

∆s
)◦ ∪ G◦3 × [0, η0)

)
by (1.5.17). A similar analysis applies to show that

Rnxnβ∗∆s
(|exp−1

z−η(z̃ − η)|−ng ) ∈ C1
(
(O2

∆s
)◦ ∪ G◦2 ∪ G3 × [0, η0)

)
in the support of β∗∆s

(χ(P )).

Finally, write β∗∆s
(x−2e−σ/x+σ/x̃) = x−2e

−σ RX̂
1+xRX̂ and combine the lifts of the factors in

(1.5.12) together with Lemma 1.5.1 to find

β∗(κÃ∇χ,η,σ) = K∇ · ν

= 2
√
g(z − η)e

− σRX̂
1+xRX̂χ

(
P (z, z + xRẐ, η)

)∣∣∣ det(dz̃ exp−1
z−η)(z − η + xRẐ)

∣∣∣(
Gij(z, z + xRẐ, η)ẐiẐj

)n/2 (R + 1)

(2 + xRX̂)n
ν,

(1.5.19)

where ν is given by (1.5.5) and it is a smooth density on X
2

independent of η and ∇.

Together with our analysis of the factors, we conclude that, away from G10, G11 and G01,

K∇ ∈ C1
(
((O2

∆s
)◦ ∪ G◦3)× [0, η0)

)
and continuous up to G◦2 . Now Taylor’s theorem in terms
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of R applies for x > 0 and we find that for R > 0 small and x > 0

K∇ = 2−n+1χ

(
X̂

|Ŷ |g

)√
g(z − η)|Ẑ|−ng +RΛ∇(x, y, R, θ, η), (1.5.20)

where Λ∇ is continuous in all of its arguments, up to x = 0: observe that by (1.5.17)

β∗∆s
(χ(P )) = χ

(
a1(z,xRẐ,η,Ẑ)

x(a2(z,xRẐ,η,Ẑ))1/2

)
with aj both C1 in their arguments, so by taking an R-

derivative the chain rule generates a factor of x that cancels the one in the denominator of

the argument of χ. Thus K∇
∣∣
G3

is indeed independent of ∇.

We will now show that K∇ vanishes to infinite order on G10, G11 and G01; the arguments

here are contained in [UV16] but we repeat them for completeness. By (1.5.4) it suffices

to show that K∇ decays exponentially as R → ∞, uniformly in η, and that it vanishes for

large negative X (since x01 = 0 when xX = −1). Assume first that we are in the region

where |Ŷ | ≤ c < 1 for some constant c uniform in η, implying that |X̂| is bounded below

by a positive constant. If X̂ < 0 then (1.4.4) guarantees that χ(P ) vanishes identically

for sufficiently large R since in its support the variable X is bounded below by a negative

constant uniform in η. On the other hand, when X̂ > 0, since we are working in a small

neighborhood of p and thus x, x̃ ≤ c0 for some small c0 > 0, we have

RX̂x =

(
x̃

x
− 1

)
⇒ RX̂x2 ≤ (c0 − x)⇒ xRX̂ ≤

(
−1 +

√
1 + 4c0RX̂

)
/2.

Thus e
−σ RX̂

1+xRX̂ ≤ e
−2σRX̂/

(
1+
√

1+4c0RX̂

)
, implying that K∇ decays exponentially fast, uni-

formly in η. Now suppose that |Ŷ | > c/2. This implies that p0
αβ(z, z+xRX̂, η)Ŷ αŶ β ≤ c̃ < 0

if η is sufficiently small and z is sufficiently close to p, since in p0
αβ(z, z, η)Ŷ αŶ β = Γ0

αβ(z −

η)Ŷ αŶ β < 0 (this follows from the strict concavity of ∂X with respect to ∇). Now the

triangle inequality yields

P (z, z + xRX̂, η) ≥ R1/2
−p0

αβŶ
αŶ β − |R−1X̂ + x( 2p0

αβX̂Ŷ
β + xp0

00X̂
2)|(

R−1|Ŷ |2g + x |qijkẐiẐjẐk|
)1/2

;

thus one can choose the R to be large and x to be small enough (by adjusting the size of the

neighborhood O) uniformly in η to guarantee that χ(P ) vanishes identically. This finishes

the proof.
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Lemma 1.5.4. Let the hypotheses and notations of Lemma 1.5.3 be in effect. Also let W be

the lift to X
2

∆s
of a vector field in Vsc(X) acting on the left factor of X

2
and x3 be a defining

function for G3. Then for any sufficiently small neighborhood O of p in X there exists η0 > 0

such that

x3W (K∇) = K∇,W (·, ·) ∈ C0
(
O2

∆s
× [0, η0)

)
, (1.5.21)

vanishing to infinite order at G10, G11 and G01. Moreover, whenever x3 induces a product

decomposition G3 × [0, ε)x3 × [0, η0)η near G3 (in O2
∆s

) one has

x3W (K∇) = κW (q, η) + x3κ∇,W (q, x3, η), (1.5.22)

where κW ∈ C0(G3 × [0, η0)) and independent of ∇ and κ∇,W ∈ C0(G3 × [0, ε)× [0, η0)).

Remark 1.5.5. The function K∇ is well defined only up to a non-vanishing smooth multi-

ple, since there isn’t a completely natural choice of non-vanishing smooth density on X
2

∆s
.

However it follows from the comments at the end of Section 1.5.1 that x3W is smooth on

X
2

∆s
, hence by Lemma 1.5.3 and (1.5.20) it follows that multiplying K∇ by a function smooth

on X
2

∆s
does not affect the result.

Proof. As discussed in Section 1.5.1 (see (1.5.3)), given a sufficiently small neighborhood

O of p ∈ ∂M e in X where global coordinates (x, y) are valid, we obtain an identification

of (O∆ι2sc
)◦ with a subset of Rn+1

+ × (0,∞) × Sn. With notation as in Section 1.5.1, we let

U±J := {(x, y, R, θ, η) ∈ Rn+1
+ × [0,∞)×U±J × [0,∞)}: the union of those sets over J,± covers

((O2
∆s

)◦ ∪ G◦2 ∪ G3)× [0, η0) for small η0 > 0, and in each of them we have valid coordinates

(x, y, R, θj, η), j 6= J . Now let W be the lift of a scattering vector field acting on the left

factor of X
2
. As shown in Section 1.5.1, on U±J we have W =

∑
j c

j
J,±(x, y, R, θ)Wj, where

Wj belong to either of the two sets W1 = {x2∂x, x∂y, ∂R} or WJ
2 = {R−1∂θj , j 6= J} and

cjJ,±(x, y, R, θ) are smooth and growing at most polynomially as R → ∞ (i.e. at the faces

G10, G11 and G01). Thus it suffices to show (1.5.21) and (1.5.22) for W1 ∈ W1, W2 ∈ WJ
2 ,

J = 0, . . . , n.
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We will use the expression (1.5.19) we computed for K∇ in Lemma 1.5.3. Fix a J and

suppose first that W1 ∈ W1: then W1 is smooth for x > 0 and we will show continuity of

W1K∇ up to x = 0. Recall the notation Ẑ = (xX̂, Ŷ ) and observe that

√
g(z − η)e

−σ RX̂
1+xRX̂

∣∣ det(dz̃ exp−1
z−η)(z − η + xRẐ)

∣∣ (R + 1)

(2 + xRX̂)n
= Λ0(z, R,Rθ, η),

with Λ0(z, R, v, η) ∈ C1
(
O× [0,∞)×Rn+1× [0, η0)

)
for some small neighborhood O of p and

small η0 > 0. Therefore, W1Λ0 is continuous on the same space. Using (1.5.17), we see that

W1

(
χ
(
P (z, z + xRẐ)

))
is continuous up to G◦2 and G3 and, similarly to the proof of Lemma

1.5.3, W1

(
Gij(z, z+xRẐ, η)ẐiẐj

)−n/2
is continuous in the support of χ

(
P
)

and χ′
(
P
)
. This

shows continuity of W1K∇(·, ·) away from G10, G11 and G10. Now exactly as in the proof of

Lemma 1.5.3, the expressions e
−σ RX̂

1+xRX̂χ′(P ), e
−σ RX̂

1+xRX̂χ(P ) vanish to infinite order at those

three faces, uniformly in η. All other factors of W1K∇ grow at most polynomially at those

faces, thus W1K∇ ∈ C0
(
O2

∆s
× [0, η0)

)
. This yields the claim for W1 ∈ W1, with κW1 ≡ 0 in

(1.5.22).

Now suppose W2 ∈ WJ
2 and we will again first look away from the faces G10, G11 and G10.

If j 6= J we have that

R−1∂θjΛ0 =
n∑

m=0

∂vmΛ0 ∂θj Ẑ
m

is continuous up to x = 0 on U±J , using the chain rule. Note that Λ0(z, 0, 0, η) is inde-

pendent of ∇. Now as already observed in the proof of Lemma 1.5.3, by (1.5.17) one has

that β∗∆s
(χ(P )) = χ

(
a1(z,xRẐ,η,Ẑ)

x(a2(z,xRẐ,η,Ẑ))1/2

)
, where aj(z, u, η, v) is C1 in (z, u, η) and C∞ in v.

Moreover, ∂vj(a1/a
1/2
2 )
∣∣
u=0

=
δ0
j (gαβv

αvβ)− v0gjαv
α

(gαβvαvb)3/2
. Thus in U±J we have, for x,R > 0 and

j 6= J ,

R−1∂θj(β
∗
∆s

(χ(P ))) =R−1χ′(P )
(
R∂u(a1/a

1/2
2 )(z, xRẐ, η, Ẑ) · ∂θj Ẑ

+ x−1∂v(a1/a
1/2
2 )(z, xRẐ, η, Ẑ) · ∂θj Ẑ

)
.

Now use Taylor’s Theorem for the function R 7→ ∂v(a1/a
1/2
2 )(z, xRẐ, η, Ẑ) · ∂θj Ẑ (which is
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C1 in the support of χ′(P )) for x > 0 to find

R−1∂θj(β
∗
∆s

(χ(P ))) =R−1χ′(P )
(
R∂u(a1/a

1/2
2 )(z, xRẐ, η, Ẑ) · ∂θj Ẑ

+ x−1∂vm(a1/a
1/2
2 )(z, 0, η, Ẑ)∂θj Ẑ

m +R bk`(z, xRẐ, η, Ẑ)Ẑk∂θj Ẑ
`
)

=R−1χ′(P )
(
R∂u(a1/a

1/2
2 )(z, xRẐ, η, Ẑ) · ∂θj Ẑ

+ x−1 δ
0
m(gαβ(z − η)vαvβ)− v0gmα(z − η)vα

(gαβ(z − η)vαvβ)3/2

∣∣∣
v=Ẑ

∂θj Ẑ
m

+R bk`(z, xRẐ, η, Ẑ)Ẑk∂θj Ẑ
`
)

; (1.5.23)

here bk`(z, u, η, v) is C0 in (z, u, η) and C∞ in v. Note that on U±J and for j 6= J

∂θj Ẑ
m =

x
δ0mδmj , m 6= J

−xδ0mθj/θm, m = J

.

Therefore, evaluating at v = Ẑ in (1.5.23)

R−1∂θj(β
∗
∆s

(χ(P ))) = χ′(P )R−1 (gαβ(z − η)Ŷ αŶ β)∂θjX̂ − X̂gmα(z − η)Ẑα∂θj Ẑ
m

(gαβ(z − η)Ŷ αŶ β)3/2
+ χ′(P )Λ1,

(1.5.24)

where Λ1 ∈ C0(U±J ) in the support of χ′(P ) (as in the proof of Lemma 1.5.3) and bounded

as R → ∞. Note that upon multiplying (1.5.24) by R and evaluating at R = 0, the first

term on the right hand side is independent of ∇ and the second one vanishes.

We similarly compute that

R−1∂θj
(
Gk`(z, z + xRẐ, η)ẐkẐ`

)−n
2

= −R−1n

2
|Ẑ|−n−2

g

(
2gk`(z − η)Ẑk∂θj Ẑ

`
)

+ Λ2

with Λ2 ∈ C0(U±J ) in the support of χ(P ) and bounded as R→∞.

As before, the expressions χ′(P )e
−σ RX̂

1+xRX̂ and χ(P )e
−σ RX̂

1+xRX̂ decay exponentially fast for

R → ∞ and in particular vanish identically for RX̂ << −1, uniformly in η, thus on U±J ,

x3W2(K∇) vanishes to infinite order at G10, G11 and G01, uniformly in η. By a partition

of unity subordinate to the cover {U±J }J,± we find that x3W2(K∇) satisfies (1.5.21) and

(1.5.22).
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We have shown the regularity results for Ãχ,η,σ, under hypotheses that apply for both

∇ = ∇̂,∇. We now wish to analyze the kernel of the difference Ẽη,σ.

Lemma 1.5.6. Let W be the lift to X
2

∆s
of a scattering vector field acting on the left factor

of X
2
, and x3 a defining function for G3, smooth and non-vanishing up to the other boundary

hypersurfaces of X
2

∆s
. Then for any sufficiently small neighborhood O of p in X there exists

η0 > 0 such that upon writing β∗∆s
(κẼη,σ) = KE · ν (where as before ν is a smooth non-

vanishing density on X
2

∆s
) one has x−1

3 KE, WKE ∈ C0
(
O2

∆s
× [0, η0)

)
and vanishing to

infinite order at G10, G11 and G01. Moreover, both WKE and x−1
3 KE vanish identically on O

for η = 0.

Proof. First observe that Lemmas 1.2.1 and 1.3.1 imply that for σ > 0 and χ0 fixed in

Proposition 1.4.3 Lemmas 1.5.2, 1.5.3 and 1.5.4 apply to both ∇ and ∇̂, provided η0 and

O are sufficiently small: one needs O to be small enough that if supp(χ0) ⊂ [−M,M ] then

Mx ≤ min{C̃∇̂, C̃∇}
√
x in O, where C̃∇̂, C̃∇ are the constants of Lemma 1.4.2 corresponding

to the two connections. Now we observe that WKE and x−1
3 KE ∈ C0

(
O2

∆s
× [0, η0)

)
and both

vanishing to infinite order on G10, G11 and G01. To see this we are using the fact that in both

(1.5.20) and (1.5.22) the leading order coefficient at the lifted diagonal ∆s does not depend

on the choice of connection and hence cancels upon taking the difference K∇̂ −K∇ (where

K∇̂, K∇ are computed using the same density ν). Finally if η = 0 we have Ẽ0,σ = E0,σ,

acting on functions supported in a subset of X = X0 ⊂ M c
e . Since (∇ − ∇̂)

∣∣
TzM̃×TzM̃

= 0

provided z /∈Me and by construction of Âχ0,0,σ (resp. Aχ0,0,σ), K∇̂(·, 0) (resp. K∇(·, 0)) only

depends on the connection ∇̂ (resp. ∇) on X ⊂ M c
e , we have WKE(·, 0), x−1

3 KE(·, 0) ≡ 0

and E0,σ = Ẽ0,σ = 0.

We finally have:

Proof of Proposition 1.4.6. As already mentioned, it suffices to show (1.5.11). Let O′ ⊂ X

be a small open neighborhood of p in X where the results of this section hold and O a

neighborhood of p in X with O ⊂ K ⊂ O′, where K compact. For sufficiently small η ≥ 0
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we have Ũη = ψη(Uη) ⊂⊂ O. Fix δ > 0. We will show that there exists an η0 such that

if 0 ≤ η < η0 then for u, v ∈ L2(O) with supp v ⊂ Ũη, and W̃j ∈ {x2∂x, x∂y1 , . . . , x∂yn} ⊂

Vsc(X) one has

|(u, W̃ k
j Ẽη,σv)| ≤ δ‖u‖L2(O)‖v‖L2(Ũη), j = 0, . . . , n, k = 0, 1. (1.5.25)

This will imply the claim since W̃j span Vsc(X) on O′. Let πL;∆s = πL◦β∆s , πR;∆s = πR◦β∆s ,

where πL, πR denote projection onto the left and right factor of X
2

respectively. By Cauchy-

Schwartz inequality and using the notations of Lemma 1.5.6

∣∣ ∫
O2

(u⊗ v)κEη,σ
∣∣2 ≤(∫

O2
∆s

∣∣(π∗L;∆s
u)KE(·, η)(π∗R;∆s

v)
∣∣ν)2

≤
∫
O2

∆s

|(π∗L;∆s
u)|2|KE(·, η)|ν ·

∫
O2

∆s

|KE(·, η)| |(π∗R;∆s
v)|2ν. (1.5.26)

Recall that the “coordinates” (1.5.3) and the analogous ones given by(
x̃, ỹ, R̃ =

√
X̃2 + |Ỹ |2, θ̃ = (X̃, Ỹ )/R̃

)
, where X̃ =

x− x̃
x̃ 2

, Ỹ =
y − ỹ
x̃

(1.5.27)

identify O2
∆s
\ (G10 ∪ G11 ∪ G01) with a subset of Rn+1

+ × [0,∞) × Sn. By interchanging the

roles of (x, y) and (x̃, ỹ), Lemma 1.5.1 yields the existence of a non-vanishing α̃ ∈ C∞(X
2

∆s
)

such that in terms of (1.5.27) ν = α̃(R̃ + 1)−1(2 + x̃R̃θ̃0)n|dx̃ dỹ dR̃ dω̃| (dω̃ is the volume

form with respect to the round metric). Thus∫
O2

∆s

|(π∗L;∆s
u)|2|KE|ν

=

∫
|u(x, y)|2|KE;L(x, y, R, θ, η)|(2 + xRθ0)n

1 +R
|dx dy dR dω| (1.5.28)

and similarly∫
O2

∆s

|KE||(π∗R;scv)|2ν

=

∫
|KE;R(x̃, ỹ, R̃, θ̃, η)| |v(x̃, ỹ)|2 (2 + x̃R̃θ̃0)n

1 + R̃
|dx̃ dỹ dR̃ dω̃|, (1.5.29)
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where KE;L, KE;R express KE in terms of (1.5.3) and (1.5.27) respectively and the integra-

tions on the right hand sides of (1.5.28) and (1.5.29) are over the appropriate subsets of

Rn+1
+ × [0,∞)× Sn corresponding to O2

∆s
(the function α̃ has been absorbed into KE;R).

By (1.5.4), (2 + xRθ0)n and (1 +R) are of the form x−n10 and x−1
11 x

−2
10 respectively. Letting

M0 and R0 be large positive integers we write∫
|u(x,y)|2|KE;L(x, y, R, θ, η)|(2 + xRX̂)n

1 +R
|dx dy dR dω|

≤ ‖u‖2
L2(O) sup

(x,y)∈O

∫
Sn

∫ ∞
0

|KE;L(x, y, R, θ, η)|(2 + xRX̂)n

1 +R
|dR dω|

= ‖u‖2
L2(O) sup

(x,y)∈O

(∫
Sn

∫ R0

0

|KE;L(x, y, R, θ, η)|(2 + xRX̂)n

1 +R
|dR dω|

+

∫
Sn

∫ ∞
R0

(1 +R)−M0

{
(1 +R)M0−1|KE;L(x, y, R, θ, η)|(2 + xRX̂)n

}
|dR dω|

)
= ‖u‖2

L2(O) sup
(x,y)∈O

(I(x, y, η) + II(x, y, η)) .

By Lemma 1.5.6, since KE vanishes to infinite order at G10, G11 and G01, there exists a

constant C such that for all (x, y) ∈ O and all 0 ≤ η ≤ η0

(1 +R)M0−1|KE;L(x, y, R, θ, η)|(2 + xRX̂)n ≤ C.

Therefore, for given δ > 0, R0 can be chosen sufficiently large that II(x, y, η) ≤ δ/2 for

0 ≤ η ≤ η0. On the other hand, I(x, y, η) is continuous (it is an integral over a compact

set of a function continuous jointly in (x, y, R, θ, η)) and it vanishes identically for (x, y, η) ∈

O × {0} ⊂ K × {0} by Lemma 1.5.6. Thus there exists η0 such that for 0 ≤ η ≤ η0 we have

sup(x,y)∈O I(x, y, η) ≤ δ/2 and (1.5.28) is bounded above by δ‖u‖2
L2(O).

Now (1.5.29) can be analyzed in exactly the same way as (1.5.28); the only difference is

that now (2 + x̃R̃θ̃0)n and (1 + R̃) are of the form x−n01 and x−1
11 x

−2
01 . This however does not

change the arguments since KE vanishes to infinite order on G11, G10 and G01 uniformly for

small η. We conclude that (1.5.25) holds for k = 0.

To show (1.5.25) for k = 1 we observe the following: working similarly to the proof of

Lemma 1.5.1 one sees that for a = x11x
n+2
2 xn3 it is the case that a−1β∗∆s

(|dzdz̃|) extends from
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(X
2

∆s
)◦ to a smooth non-vanishing density ν on X

2

∆s
(as before, x∗ stands for a boundary

defining function of G∗ that is smooth and non-vanishing up to the other faces). By the

analysis at the end of Section 1.5.1 it follows that for j = 0, . . . , n the vector field x3Wj,

where Wj is the lift of W̃j, is smooth on X
2

∆s
and tangent to all of its boundary hypersurfaces.

Thus (Wja)/a ∈ x−1
3 C∞(X

2

∆s
). Writing κEη,σ = κ̃E(z, z̃, η)|dzdz̃| so that β∗∆s

(κ̃E)a = KE we

have, for u, v ∈ L2(O) as before,∫
O2

u(z)(W̃j κ̃E(z, z̃, η))v(z̃)|dzdz̃| =
∫
O2

∆s

(π∗L;∆s
u) β∗∆s

(W̃j κ̃E)(π∗R;∆s
v) aν

=

∫
O2

∆s

(π∗L;∆s
u) [Wjβ

∗
∆s

(κ̃E)]a(π∗R;∆s
v) ν

=

∫
O2

∆s

(
π∗L;∆s

u) (WjKE −KE
Wj a

a

)
(π∗R;∆s

v) ν.

Then (1.5.25) for k = 1 follows exactly the same steps as for k = 0 from (1.5.26) onwards,

with KE replaced by WjKE − ((Wj a)/a)KE: by Lemma 1.5.6 WjKE − ((Wj a)/a)KE ∈

C0
(
O2

∆s
× [0, η0)

)
, it vanishes to infinite order on G10, G11, G01 and is identically 0 for η = 0.

This finishes the proof of the proposition.
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Chapter 2

ASYMPTOTICALLY HYPERBOLIC MANIFOLDS WITH
BOUNDARY CONJUGATE POINTS BUT NO INTERIOR

CONJUGATE POINTS
1

As already discussed in more detail in the Introduction, this chapter is dedicated to the

construction of non-trapping asymptotically hyperbolic manifolds with boundary conjugate

points but no interior conjugate points. This is done by first constructing a piecewise smooth

C1.1 metric on Rn+1 that compactifies to an AH metric on the ball that satisfies all of the

required properties except smoothness. That those properties hold can be shown in this

case using explicit formulas for geodesics and Jacobi fields. As a second step, the metric

is approximated by smooth metrics while ensuring that none of the properties we need is

violated. The chapter is organized as follows. The C1,1 metric is constructed in Section 2.1:

in 2.1.1 we define it and state some general properties, in 2.1.2 we show explicit formulas

for the curvature along geodesics and in 2.1.3 we compute formulas for Jacobi fields and

show Theorem 2 in the C1,1 case. In Section 2.2 we prove Theorem 2 in the C∞ case. We

first reduce Theorem 2 to three propositions (2.2.1, 2.2.2, 2.2.3) concerning stable Jacobi

fields and absence of conjugate points for the approximating metrics. Then we carry out the

analysis of the derivatives of the stable solutions, prove Proposition 2.2.18 which rules out

interior conjugate points, and conclude by proving Propositions 2.2.1, 2.2.2, 2.2.3.

1The material in this chapter has been accepted and is soon to be published: Nikolas Eptaminitakis
and C. Robin Graham, Asymptotically hyperbolic manifolds with boundary conjugate points but no interior
conjugate points, Journal of Geometric Analysis, Springer New York.



54

2.1 The C1,1 Metric

2.1.1 The Metric

We will construct metrics on Rn+1\{0} ' (0,∞)ρ × Sn of the form

g = dρ2 +A2(ρ)̊g (2.1.1)

in polar coordinates that extend smoothly to the origin. Here g̊ denotes the round metric on

Sn and A(ρ) is a positive function on (0,∞) to be chosen appropriately, with A(ρ) = sin(ρ)

for ρ small. Hence in a neighborhood of the origin g is smooth and is isometric to the round

metric on Sn+1. Relative to the product decomposition Rn+1\{0} ' (0,∞)×Sn, the non-zero

Christoffel symbols of g are

Γ0
αβ = −A(ρ)A′(ρ)̊gαβ, Γγα0 = A−1(ρ)A′(ρ)δγα, Γγαβ = Γ̊γαβ, (2.1.2)

where Γ̊ are the Christoffel symbols of the round metric and ρ is the 0-th coordinate.2 The

form of the Christoffel symbols implies that for any k = 1, . . . , n+1, k-dimensional Euclidean

planes passing through the origin are totally geodesic. To see this, note that the intersection

of Sn ⊂ Rn+1 with any k-dimensional plane through the origin is totally geodesic for the

round metric, and that in general an embedded submanifold Mk ⊂ M̃d is totally geodesic if

and only if in any coordinate chart (U,ϕ) for which ϕ(U∩M) ⊂ {(z, z′) ∈ Rk×Rd−k : z′ = 0},

the Christoffel symbols satisfy Γmij = 0 on M ∩U for i, j ≤ k and all m ≥ k+ 1. As a special

case, lines of the form γ(t) = tv for v ∈ Rn+1 with Euclidean length 1 are totally geodesic,

and in fact they are radial unit speed geodesics for g.

The curvature tensor of warped product metrics like g can be described as follows. This

is a special case of Proposition 42, Chapter 7 in [ONe83].

Proposition 2.1.1. Let g = dρ2 +A2(ρ)b, where ρ ∈ R, 0 < A ∈ C∞(R), and b is a metric

on a manifold B. If R, Rb denote the Riemannian curvature tensors of g, b, respectively,

and U , V , W ∈ X(B), then

2Throughout this chapter, Greek indices run from 1 to n and Latin indices run from 0 to n.
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(1) R(∂ρ, V )∂ρ = −A−1(ρ)A′′(ρ)V

(2) R(V,W )∂ρ = 0

(3) R(∂ρ, V )W = 〈V,W 〉gA−1(ρ)A′′(ρ)∂ρ

(4) R(V,W )U = Rb(V,W )U − (A′(ρ))2A−2(ρ)(〈V, U〉gW − 〈W,U〉gV ).

For an O(n+1)-invariant metric on Rn+1, the sectional curvature of a 2-plane Π ⊂ TpRn+1

at a point p = ρω, ρ > 0, ω ∈ Sn, depends only on ρ and the angle α between ∂ρ and

Π. We will denote any such plane by Πρ;cos(α) and the corresponding sectional curvature by

Sec(Πρ;cos(α)).
3 Then by Proposition 2.1.1 we find, for 2-planes parallel to the radial direction,

Sec(Πρ;1) = −A(ρ)−1A′′(ρ) =: K‖(ρ). (2.1.3)

Moreover, if n ≥ 2, for 2-planes normal to the radial direction we have

Sec(Πρ;0) = A−2(ρ)−A−2(ρ)(A′(ρ))2 =: K⊥(ρ). (2.1.4)

More generally, it follows from (2) in Proposition 2.1.1 and the symmetries of the curvature

tensor that R(u,w, u, ∂ρ) = 0 for u, w ∈ ∂⊥ρ , so for α ∈ [0, π/2] we have

Sec(Πρ;cos(α)) = cos2(α)K‖(ρ) + sin2(α)K⊥(ρ). (2.1.5)

It will later be convenient to use (2.1.5) to define Sec(Πρ;cos(α)) for cos(α) ∈ [−1, 0) so that

(2.1.5) holds for all cos(α) ∈ [−1, 1] and ρ > 0. From (2.1.3) and the fact that A(ρ) = sin(ρ)

for small ρ it follows that A solves the equation A′′(ρ) + Sec(Πρ;1)A(ρ) = 0 with A(0) = 0

and A′(0) = 1.

The previous discussion indicates that the geometry induced by g on Rn+1 is entirely de-

termined by the radial curvature function K‖, thus our goal will be to choose it appropriately.

3We use Sec for sectional curvature, as opposed to sec which will be used for the secant of a real number.
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We let, for ρ ≥ 0, r > 0 and ε ≥ 0,

K‖r,ε(ρ) =

1− 2ϕ(ρ−r
ε

) ε > 0

1− 2H(ρ− r) ε = 0,

where ϕ ∈ C∞(R) satisfies 0 ≤ ϕ ≤ 1, ϕ(ρ) = 0 for ρ ≤ 0 and ϕ(ρ) = 1 for ρ ≥ 1, and H is

the Heaviside function: H(ρ) = 0 if ρ ≤ 0, H(ρ) = 1 if ρ > 0. In particular, K
‖
r,ε(ρ) = 1 for

ρ ≤ r. Observe that K
‖
r,ε is C∞ if ε > 0 and is piecewise C∞ if ε = 0. Moreover, for each r,

K
‖
r,ε −K‖r,0 → 0 in L1([0,∞)) as ε→ 0.

Define Ar,ε to be the solution to

A′′ +K‖r,εA = 0, A(0) = 0, A′(0) = 1, (2.1.6)

where if ε = 0, Ar,0 is interpreted as a weak solution. This means that it is the unique C1

function satisfying the initial conditions in (2.1.6) which in addition solves the differential

equation in the open intervals where K
‖
r,0 is smooth. Observe that for all ε ≥ 0,

Ar,ε(ρ) =

sin(ρ) ρ ≤ r

a+e
ρ + a−e

−ρ ρ ≥ r + ε,

(2.1.7)

where a± depend on r, ε. When ε = 0, the values of a± are determined by matching the

value and the derivative at ρ = r with those of sin(ρ). The case r = π/4 is special in that

a− = 0:

Aπ/4,0(ρ) =

√
2

2
eρ−π/4 ρ ≥ π/4. (2.1.8)

This is fortuitous, because as we will see, r = π/4 is precisely the value for which the

corresponding metric has boundary conjugate points but no interior conjugate points. It is

not true that a− = 0 for other choices of r, including the degenerate case r = 0, ε = 0, which

corresponds to hyperbolic space.

The Sturm Comparison Theorem implies that Ar,ε > 0 on (0, π) and comparison of

the Prüfer angle (Theorem 1.2, p. 210 of [CL55]) shows that A′r,ε > 0 on (0, π/2). Since

A′′r,ε = Ar,ε on (r + ε,∞), it follows that Ar,ε > 0 and A′r,ε > 0 on (0,∞) if we require
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r + ε < π/2, which we do henceforth. In particular, a+ > 0 in (2.1.7). Ultimately we will

only care about r near π/4 and ε near 0.

We will denote by gr,ε the metric given by (2.1.1) with A replaced by Ar,ε. So gr,ε

restricted to the geodesic ball Br(0) centered at the origin is isometric to the corresponding

geodesic ball in Sn+1, and in particular the sectional curvatures of gr,ε are all equal to 1 for

ρ < r. The sectional curvature of 2-planes parallel to the radial direction is −1 for ρ > r+ ε,

but not for other 2-planes if n ≥ 2. The metric gr,ε is asymptotically hyperbolic (but only

C1,1 if ε = 0) if Rn+1 is radially compactified with defining function e−ρ for the boundary at

infinity. In particular, gr,ε is complete.

Our goal in Section 2.1 is to show that gπ/4,0 satisfies all of the properties stated in

Theorem 2 except for smoothness.

2.1.2 Geodesics and Sectional Curvature

Since g = gr,ε is at least C1,1, it determines geodesics of class at least C2,1. Provided a unit

speed geodesic γ(t) of g is not radial, γ(0) and γ′(0) determine a unique 2-plane through

the origin denoted by Σγ; as mentioned earlier, Σγ is totally geodesic and hence γ is entirely

contained in it. For radial geodesics γ, we will write Σγ for any 2-plane containing γ.

To study any unit speed geodesic γ it is sufficient to work in Σγ with induced metric

g
∣∣
Σγ

= dρ2 + A2(ρ)dθ2, where A = Ar,ε. According to (2.1.2), ρ(t) := ρ(γ(t)) satisfies the

equation

ρ′′ = A−1(ρ)A′(ρ)
(
1− (ρ′)2

)
. (2.1.9)

If γ is not radial, the initial conditions take the form ρ(0) = s > 0, ρ′(0) = v with |v| < 1.

It is evident from (2.1.7) that there is a = ar,ε > 0 so that A−1(ρ)A′(ρ) ≥ a for all ρ > 0. A

comparison theorem (e.g. Theorem 11.XVI of [Wal98]) implies that ρ(t) ≥ ρ(t) for all t ∈ R,

where ρ is the solution of

ρ′′ = a
(
1− (ρ′)2

)
(2.1.10)
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satisfying the same initial conditions. Equation (2.1.10) is separable for ρ′; the solution is

ρ(t) = s+ a−1 log
(

1
2

(
(1 + v)eat + (1− v)e−at

))
. (2.1.11)

It follows in particular that ρ(t)→∞ as t→ ±∞ so that gr,ε is nontrapping. Since ρ′′ > 0,

ρ achieves its minimum at a unique time which we take to be t = 0. The corresponding

point is the closest point on γ to the origin, whose distance to the origin we write s. We

denote this solution by ρs,r,ε; it is thus the solution to (2.1.9) with A = Ar,ε and with initial

conditions ρ(0) = s > 0, ρ′(0) = 0. For a radial geodesic the distance to the origin is s = 0

and the corresponding solution is ρ0,r,ε(t) = t. We denote by γs,r,ε any unit speed geodesic

with radial coordinate function ρs,r,ε.

If s < r, then γs,r,ε intersects the geodesic ball Br(0) where the curvature is 1 and

A(ρ) = sin(ρ). In this case, it is easily checked by directly verifying (2.1.9) and the initial

conditions that

ρs,r,ε(t) = arccos
(
cos(s) cos(t)

)
. (2.1.12)

This holds up to the time t such that ρs,r,ε(t) = r. We denote this time by `r(s); geometrically

this is the distance between γs,r,ε(0) and ∂Br(0) and clearly it is given by

`r(s) = arccos

(
cos(r)

cos(s)

)
. (2.1.13)

For future reference note that

ρ′s,r,ε(`r(s)) =

√
cos2(s)− cos2(r)

sin(r)
. (2.1.14)

This also has a geometric interpretation: since ∂ρ and γ′ are unit vectors, ρ′s,r,ε(`r(s)) =

〈γ′(`r(s)), ∂ρ〉 = cos (α), where α is the the angle between γ′(t) and ∂ρ when t = `r(s), i.e.

where ρ(t) = r. The above formulas for ρs,r,ε(t), `r(s) and ρ′s,r,ε(`r(s)) can also be derived

directly via the geometry of S2.

Our primary focus in Section 2.1 is the case r = π/4, ε = 0. We suppress these subscripts,

so for instance subsequently we write g = gπ/4,0, γs = γs,π/4,0, ρs(t) = ρs,π/4,0(t) = ρ(γs(t)),

`(s) = `π/4(s). Note that for r = π/4, (2.1.14) reduces to ρ′s(`(s)) =
√

cos(2s).
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When r = π/4 and ε = 0, (2.1.8) shows that (2.1.9) for ρ > π/4 reduces to (2.1.10) with

a = 1. The initial conditions for ρs are ρs(`(s)) = π/4, ρ′s(`(s)) =
√

cos(2s). The solution is

given by (2.1.11) with t replaced by t− `(s). It can be written in the form

ρs(t) = π/4 + logF (t, s) t ≥ `(s),

where

F (t, s) = cosh(t− `(s)) +
√

cos(2s) sinh(t− `(s)). (2.1.15)

For t ≤ −`(s) one has ρs(t) = ρs(−t).

Equation (2.1.5) expresses the sectional curvatures of g in terms of the distance ρ to the

origin and the angle α between ∂ρ and the plane Π. In our subsequent analysis of Jacobi fields,

the sectional curvature for gr,ε along a geodesic γs,r,ε(t) of the plane spanned by γ′s,r,ε(t) and

a vector normal to Σγs,r,ε will play a fundamental role. Since ρ′s,r,ε(t) = cos(∠(γ′s,r,ε(t), ∂ρ)),

the sectional curvature of interest is

Ks,r,ε(t) := Sec(Πρs,r,ε(t);ρ′s,r,ε(t)).

As usual we write Ks = Ks,π/4,0.

Lemma 2.1.2. Suppose n ≥ 2 and 0 ≤ s < π/4. Then

Ks(t) =

1, 0 ≤ |t| < `(s)

−1 + 4 sin2(s)F−4(|t|, s), |t| > `(s)

Proof. For ρ > π/4 we have K‖(ρ) = −1 and K⊥(ρ) = −1+2e−2(ρ−π/4). Hence, for |t| > `(s)

(2.1.5) yields

Sec(Πρs(t);ρ′s(t)) =(ρ′s(t))
2(−1) + (1− (ρ′s(t))

2)
(
−1 + 2e−2(ρs(t)−π/4)

)
=− 1 + 4 sin2(s)F−4(|t|, s). (2.1.16)
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There is a similar analysis for geodesics that do not intersect the geodesic ball Bπ/4(0).

This time (2.1.8) holds along the whole geodesic, and the solution (2.1.11) of the geodesic

equation satisfying the initial conditions ρ(0) = s, ρ′(0) = 0 is ρs(t) = s + log(cosh(t)).

Repeating the computation (2.1.16) yields the following.

Lemma 2.1.3. Suppose n ≥ 2 and s ≥ π/4. Then

Ks(t) = −1 + 2e−2s+π/2 sech4(t), t ∈ R.

In the analysis above we have only used formulas for the radial coordinate of geodesics.

We summarize them here and for completeness also provide the angular coordinate θ for a

geodesic, even though it will not play a role in the rest of this chapter. With F (t, s) as in

(2.1.15),

ρs(t) =


arccos(cos(t) cos(s)), 0 ≤ s < π/4, |t| ≤ `(s)

log
(
F (|t|, s)

)
+ π/4, 0 ≤ s < π/4, |t| > `(s)

log(cosh(t)) + s, s ≥ π/4, t ∈ R

.

Setting

θs(t) :=



arcsin

(
sin(t)√

1− cos2(s) cos2(t)

)
, 0 ≤ s < π/4,

|t| ≤ `(s)

sgn(t)

(
2 sin(s) sinh (|t| − `(s))

F (|t|, s)
+ arcsin

(√
1− tan2(s)

))
, 0 ≤ s < π/4,

|t| > `(s)

√
2 tanh(t)e−s+π/4, s ≥ π/4,

t ∈ R

,

the curve (ρs(t), θs(t)) on Σγs satisfies the geodesic equation for each s ≥ 0. Any other

geodesic on Σγs can be obtained by translation in θ.
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2.1.3 Analysis of Jacobi Fields

In this subsection we first identify the scalar equations solved by normal Jacobi fields for

gr,ε. Then we compute explicitly the normal Jacobi fields of the C1,1 metric g = gπ/4,0 and

show that (Rn+1, g) has no interior conjugate points but has boundary conjugate points.

The following general fact can be proved using the Gauss and Codazzi equations:

Proposition 2.1.4. Let (M, gM) be a totally geodesic submanifold of a Riemannian manifold

(M̃, gM̃). Let γ be a geodesic contained in M and Y be a normal gM̃ -Jacobi field along γ.

When Y is decomposed as Y = Y1 +Y2, where Y1 is everywhere tangent and Y2 is everywhere

normal to M , then Y2 is a Jacobi field in M̃ and Y1 is a Jacobi field in both M and M̃ .

Proposition 2.1.4 implies that to analyze normal Jacobi fields along a geodesic γ of gr,ε, it is

enough to analyze separately Jacobi fields tangent and normal to Σγ.

Consider first a geodesic γ ⊂ Σγ and a Jacobi field Y (t) normal to γ but tangent to Σγ of

the form Y (t) = Y(t)E(t), where E(t) is a parallel vector field along γ and Y is real valued.

Since Y (t) is a Jacobi field in the 2-dimensional manifold Σγ and the radial vector field is

parallel to Σγ, Y(t) solves the scalar Jacobi equation

Y ′′(t) +K‖r,ε(ρs,r,ε(t))Y(t) = 0. (2.1.17)

Next consider Jacobi fields along a geodesic γ that are orthogonal to the plane Σγ. The

following lemma reduces the problem to the study of scalar equations.

Lemma 2.1.5. Let n ≥ 2, γ ⊂ Σγ be a unit speed geodesic for gr,ε and Y ⊥ Σγ a Jacobi

field along it. Then Y satisfies the scalar Jacobi equation

D2
tY (t) +Ks,r,ε(t)Y (t) = 0.

Proof. It is sufficient to show that R(γ′(t), Y (t))γ′(t) = a(t)Y (t), t ∈ R, for some scalar

function a(t); then necessarily a(t) = Ks,r,ε(t), since the plane determined by γ′(t) and Y (t)

is is of the form Πρs,r,ε(t);ρ′s,r,ε(t). The statement is local, so we can use polar coordinates (ρ, θ)
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on Σγ to write γ′(t) = λ(t)∂ρ + µ(t)∂θ. This implies

R(γ′, Y )γ′ =λ2R(∂ρ, Y )∂ρ + λµ(R(∂ρ, Y )∂θ +R(∂θ, Y )∂ρ) + µ2R(∂θ, Y )∂θ.

By Proposition 2.1.1, for the first term we have R(∂ρ, Y (t))∂ρ = −A′′(t)/A(t)Y (t), the second

term vanishes and for the third we have

R(∂θ, Y (t))∂θ = RSn(∂θ, Y (t))∂θ − (A′(t))2/A2(t)|∂θ|2gY (t).

Now RSn(∂θ, Y (t))∂θ = Y (t) since Sn has constant sectional curvature 1, so the lemma is

proved.

So if we take Y (t) as in Lemma 2.1.5 of the form Y (t) = Y(t)E(t), where E(t) is a parallel

vector field along γ, then Y solves the equation

Y ′′(t) +Ks,r,ε(t)Y(t) = 0 (2.1.18)

where

Ks,r,ε(t) = (ρ′µ(t))2K‖r,ε(ρµ(t)) +
(
1− (ρ′µ(t))2

)
K⊥r,ε(ρµ(t)), µ = (s, r, ε) (2.1.19)

and K⊥r,ε(ρ) is given by (2.1.4) with A replaced by Ar,ε. Note that Ks,r,ε = K
‖
r,ε ◦ ρs,r,ε for

s = 0. So for radial geodesics the equations (2.1.17) and (2.1.18) for Jacobi fields tangent

and normal to Σγ coincide.

We write U‖s,r,ε(t), V‖s,r,ε(t) for the solutions (weak solutions if ε = 0) of (2.1.17) with the

initial conditions U‖s,r,ε(0) = 1, U‖s,r,ε′(0) = 0 and V‖s,r,ε(0) = 0, V‖s,r,ε′(0) = 1. Likewise we

write U⊥s,r,ε(t), V⊥s,r,ε(t) for the solutions of (2.1.18) satisfying U⊥s,r,ε(0) = 1, U⊥s,r,ε′(0) = 0 and

V⊥s,r,ε(0) = 0, V⊥s,r,ε′(0) = 1. And once again we suppress (r, ε) when (r, ε) = (π/4, 0).

Now we solve (2.1.17), (2.1.18) for (r, ε) = (π/4, 0), beginning with (2.1.17). If s ≥ π/4

then K‖ = −1, so

U‖s (t) = cosh(t), V‖s (t) = sinh(t) s ≥ π/4.
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If s < π/4 then K‖(ρs(t)) has a jump discontinuity at |t| = `(s) and the solutions must be

C1 across the jump. It is easily verified that

U‖s (t) =

cos(t), |t| ≤ `(s)

cos(`(s)) cosh(|t| − `(s))− sin(`(s)) sinh(|t| − `(s)), |t| > `(s)

, (2.1.20)

V‖s (t) =

sin(t), |t| ≤ `(s)

sign(t)
(

sin(`(s)) cosh(|t| − `(s)) + cos(`(s)) sinh(|t| − `(s))
)
, |t| > `(s)

.

(2.1.21)

Recall that `(0) = π/4. So U‖0 (t) =
√

2
2
e−(|t|−π/4) for |t| > π/4. The corresponding Jacobi

field vanishes as |t| → ∞. Hence g has boundary conjugate points along radial geodesics.

Lemma 2.1.6. Let γ be a unit speed geodesic for gπ/4,0 contained in a 2-dimensional plane

Σγ through the origin. Any non-trivial Jacobi field Y (t) normal to γ and tangent to Σγ

vanishes at most once.

Proof. We claim that for any s ≥ 0, U‖s is a positive solution of (2.1.17). This is clear when

s ≥ π/4 where U‖s (t) = cosh(t). For s < π/4 it follows from (2.1.20) and the fact that

sin(`(s)) ≤
√

2/2 ≤ cos(`(s)) (recall (2.1.13)). Now the usual Sturm Separation Theorem is

valid for an ODE of the form Y ′′(t) +k(t)Y(t) = 0, where k is integrable and real valued and

the derivatives are interpreted in a weak sense (see, e.g. comment in [CL55], p. 208). Thus

no non-trivial solution of (2.1.17) can vanish twice.

Recall that Ks(t) is identified in Lemmas 2.1.2 and 2.1.3. We were astonished to find

that the scalar Jacobi equations

Y ′′(t) +Ks(t)Y(t) = 0 (2.1.22)

can be solved explicitly. To do so, note first that for all t if s ≥ π/4 and for |t| > `(s)

if s < π/4, Ks(t) has the form Ks(t) = −1 + f−4(t), where f ′′(t) − f(t) = 0. Observing

that for any t0 such that f(t0) 6= 0 one has
( sinh(t−t0)
f(t0)f(t)

)′
= f−2(t), it is easy to check that
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Y(t) = f(t)b
( sinh(t−t0)
f(t0)f(t)

)
with b′′(x) + b(x) = 0 is the general solution of the equation Y ′′(t) +

(−1 + f−4(t))Y(t) = 0.

For each s > 0 we identify the solutions U⊥s and V⊥s of (2.1.22). For s ≥ π/4 we take

t0 = 0 and obtain

U⊥s (t) = cosh(t) cos
(√

2e−s+π/4 tanh(t)
)

V⊥s (t) =

√
2

2
es−π/4 cosh(t) sin

(√
2e−s+π/4 tanh(t)

)
.

(2.1.23)

For 0 < s < π/4 we take t0 = ±`(s) and obtain

U⊥s (t) =

cos(t), |t| ≤ `(s)
√

2
2

csc(s)F (|t|, s) cos(Θ(|t|, s)) |t| > `(s)

, 0 < s < π/4, (2.1.24)

where Θ(t, s) := 2 sin(s) sinh(t− `(s))F−1(t, s) + arccos(tan(s)) and F (t, s) is as in (2.1.15).

Note here that cos(x+ arccos(tan(s))) is a solution of b′′(x) + b(x) = 0. Also

V⊥s (t) =

sin(t), |t| ≤ `(s)

sign(t)
√

2
2
F (|t|, s) sin(Θ(|t|, s)) |t| > `(s)

, 0 < s < π/4. (2.1.25)

We remark that these solutions extend smoothly to s = 0 and U⊥0 = U‖0 , V⊥0 = V‖0 . This

is clear for Vs, but for Us requires evaluating the indeterminant expression appearing in

(2.1.24).

Lemma 2.1.7. Let n ≥ 2 and γ be a unit speed geodesic for gπ/4,0 contained in a 2-

dimensional plane Σγ through the origin. Any nontrivial Jacobi field Y (t) along γ normal to

Σγ vanishes at most once.

Proof. For radial geodesics the proof of Lemma 2.1.6 applies since the equations for Jacobi

fields tangent and normal to Σγ coincide.

We claim that U⊥s is everywhere positive for any s > 0. For s ≥ π/4 this is clear from

(2.1.23) since |
√

2e−s+π/4 tanh(t)| ≤
√

2 < π/2. For 0 < s < π/4, according to (2.1.24) it

suffices to show that 0 < Θ(t, s) < π/2 for t ≥ `(s). It is easily verified that for 0 < s < π/4
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one has ∂tΘ(t, s) > 0 for t ≥ `(s). So for each s, Θ(t, s) strictly increases from a minimum

of arccos(tan(s)) at t = `(s) to a limit of

Θ∞(s) := lim
t→∞

Θ(t, s) = arccos(tan(s)) +
2 sin(s)

1 +
√

cos(2s)
. (2.1.26)

A straightforward calculation shows that

∂sΘ∞(s) =
−2 sin2 s

cos(s)
(

1 +
√

cos(2s)
)2 0 ≤ s < π/4. (2.1.27)

So Θ∞(s) strictly decreases from a maximum of π/2 at s = 0 to a minimum of
√

2 at s = π/4.

Thus 0 < Θ(t, s) < π/2 for 0 < s < π/4 and t ≥ `(s).

Once again the result now follows from the Sturm Separation Theorem.

Proof of Theorem 2, C1,1 metric. We have already noted that g = gπ/4,0 is non-trapping and

has boundary conjugate points along radial geodesics. If Y is a normal Jacobi field along a

unit speed geodesic γ ⊂ Σγ, write Y = Y1 + Y2 with Y1 tangent to Σγ and Y2 normal to it,

as in Proposition 2.1.4. If Y vanishes twice, so do Y1 and Y2. Lemmas 2.1.6 and 2.1.7 imply

that both Y1 and Y2 vanish identically, so g has no interior conjugate points.

2.2 Smooth Perturbation

In this section we show that we can find (r, ε) near (π/4, 0) with ε > 0 so that gr,ε has no inte-

rior conjugate points but has boundary conjugate points along radial geodesics, thus proving

Theorem 2. First we outline the argument. Our analysis will focus on the decaying (also

called stable) solutions of the Jacobi equations (2.1.17), (2.1.18). As we argue below, since

K
‖
r,ε(ρs,r,ε(t)) and Ks,r,ε(t) are asymptotic to−1 as t→∞, there are unique solutions Y‖s,r,ε(t),

Y⊥s,r,ε(t) to (2.1.17), (2.1.18), resp., such that limt→∞ e
tY‖s,r,ε(t) = 1, limt→∞ e

tY⊥s,r,ε(t) = 1.

For K
‖
r,ε(ρs,r,ε(t)) this is clear since K

‖
r,ε(ρ) = −1 for ρ large. Of course for s = 0 we have

Y‖0,r,ε = Y⊥0,r,ε since K
‖
r,ε ◦ ρ0,r,ε = K0,r,ε. We will show that Y‖0,r,ε(0) 6= 0 for (r, ε) sufficiently

near (π/4, 0). If Y‖0,r,ε′(0) = 0 and E(t) is a non-zero parallel vector field along γ0,r,ε, then

Y‖0,r,ε(|t|)E(t) is a nontrivial Jacobi field which decays as t→ ±∞. The corresponding metric

gr,ε therefore has boundary conjugate points along radial geodesics. We will prove
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Proposition 2.2.1. Any neighborhood of (π/4, 0) contains a point (r, ε) with ε > 0 so that

Y‖0,r,ε′(0) = 0.

It then remains to show that the corresponding metric gr,ε has no interior conjugate points.

We will do this via the following two propositions.

Proposition 2.2.2. There exist a neighborhood U of (π/4, 0) and σ > 0 such that if (r, ε) ∈

U and Y‖0,r,ε′(0) = 0, then gr,ε has no interior conjugate points along any geodesic γs,r,ε with

0 ≤ s ≤ σ.

Proposition 2.2.3. For every σ > 0, there exists a neighborhood V of (π/4, 0) so that if

(r, ε) ∈ V , then gr,ε has no interior conjugate points along any geodesic γs,r,ε with s ≥ σ.

Theorem 2 reduces to these three propositions:

Proof of Theorem 2. Choose U and σ as in Proposition 2.2.2. Then choose V as in Propo-

sition 2.2.3 corresponding to this σ. Proposition 2.2.1 asserts that there is (r, ε) ∈ U ∩ V

with ε > 0 so that Y‖0,r,ε′(0) = 0. The metric gr,ε then has boundary conjugate points but no

interior conjugate points, and, as before, it is non-trapping.

Note that by successively shrinking the neighborhoods, one obtains a sequence of metrics

grj ,εj with εj > 0 and (rj, εj)→ (π/4, 0) such that each grj ,εj has boundary conjugate points

but no interior conjugate points. The proof actually shows that for each ε sufficiently small,

there is rε so that grε,ε has boundary conjugate points but no interior conjugate points.

Continuity as ε → 0 of solutions of (2.1.17), (2.1.18) and of various of their derivatives

in s and t are essential to the proofs of Propositions 2.2.1, 2.2.2, 2.2.3. This is a singular

limit, as the functions K
‖
r,ε(ρs,r,ε(t)) and Ks,r,ε(t) develop jump singularities as ε → 0. We

have had to do quite a bit of work to prove the necessary continuity properties. We present

this continuity analysis next and afterwards return to the proofs of Propositions 2.2.1, 2.2.2,

2.2.3. We begin the analysis by formulating some general results on ODE: Propositions

2.2.4-2.2.8, that we will apply in our setting.
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Let F : Rd → Rd be a vector field. Suppose that F is continuous and piecewise C∞:

there is a smooth hypersurface S ⊂ Rd locally dividing Rd into two open subsets U+, U− and

two smooth vector fields F+, F− on Rd so that F = F± on U± and F+ = F− on S. Consider

the integral curves of F , which solve the ODE

x′(t) = F(x(t)), x(0) = s.

Since F is Lipschitz, for each s there exists a unique solution x(s, t), and x(s, t) and x′(s, t)

are jointly continuous. We assume below that the solutions exist on all the time intervals

considered.

Proposition 2.2.4. Suppose that (s0, t0) has the property that x(s0, 0) and x(s0, t0) are on

opposite sides of S, and the curve t 7→ x(s0, t), 0 < t < t0, crosses S exactly once and

does so transversely. There is a smooth function T (s) defined for s in a neighborhood V of

s0 such that 0 < T (s) < t0 and x(s, T (s)) ∈ S. The restrictions of x(s, t) to the two sets

{(s, t) : s ∈ V , 0 ≤ t ≤ T (s)} and {(s, t) : s ∈ V , T (s) ≤ t ≤ t0} are C∞.

Proof. Suppose x(s0, 0) ∈ U− and x(s0, t0) ∈ U+. The curve t 7→ x(s0, t) is an integral curve

of F− up until the time that x(s0, t) ∈ S. Since F− is smooth, its integral curves are smooth

functions of (s, t). Since the crossing is transverse, there is a unique smooth function T (s)

defined for s near s0 by the condition that x(s, T (s)) ∈ S. The map s 7→ x(s, T (s)) is

smooth from a neighborhood of s0 to S, and x(s, t) is smooth for t ≤ T (s). For s near s0, the

curve t 7→ x(s, t), t ≥ T (s) is an integral curve of F+ whose initial point x(s, T (s)) depends

smoothly on s. By smoothness of the integral curves of F+, it follows that x(s, t) is smooth

for t ≥ T (s).

Proposition 2.2.5. In the setting of Proposition 2.2.4, x(s, t) is jointly C1 in a neighborhood

of (s0, T (s0)).

Proof. We know that x′(s, t) is continuous, and that ∂sx(s, t) exists on {t 6= T (s)} and

extends smoothly up to {t = T (s)} separately from each side. It suffices to show that
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the values from the two sides agree on {t = T (s)}. Let x− denote the restriction of x to

{(s, t) : s ∈ V , 0 ≤ t ≤ T (s)} and x+ the restriction of x to {(s, t) : s ∈ V , T (s) ≤ t ≤ t0}.

Then x+(s, T (s)) = x−(s, T (s)) for all s. Differentiation in s shows that ∂sx+ + ∂sT · x′+ =

∂sx−+∂sT ·x′− when t = T (s). Since x′+ = x′− when t = T (s), it follows that also ∂sx+ = ∂sx−

when t = T (s).

Similar arguments apply for linear equations with piecewise smooth coefficients. In this

case we do not assume continuity across the singularity. Consider an intial value problem

x′(s, t) = M(s, t)x(s, t), x(s, 0) = x0(s), (2.2.1)

where x(s, t) ∈ Rd, M(s, t) ∈ Rd×d, and the parameter s ∈ Rk. We assume that

M(s, t) =

M−(s, t) t < T (s)

M+(s, t) t > T (s),

where T (s) > 0, s 7→ T (s) is C∞, each of M± is C∞ on Rk × R, and x0 is C∞. It is not

assumed that M−(s, T (s)) = M+(s, T (s)). We require that x(s, t) is a weak solution in the

sense that that for each s, x(s, t) is a solution for t 6= T (s), and x is continuous across

t = T (s). The proof of the following proposition is similar to that of Proposition 2.2.4:

Proposition 2.2.6. The problem (2.2.1) has a unique weak solution for each s, and the

restrictions of x(s, t) to {(s, t) : t ≤ T (s)} and {(s, t) : t ≥ T (s)} are C∞.

Proof. There is a unique solution x−(s, t) to

x′−(s, t) = M−(s, t)x−(s, t), x−(s, 0) = x0(s),

and x− is C∞. Likewise, there is a unique solution x+(s, t) to

x′+(s, t) = M+(s, t)x+(s, t), x+(s, T (s)) = x−(s, T (s)),

and x+ is C∞. The function defined by

x(s, t) =

x−(s, t) t ≤ T (s)

x+(s, t) t ≥ T (s)
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is a weak solution of (2.2.1), and is clearly the only weak solution.

To analyze continuity at ε = 0 we will use the following two results, which are standard

applications of Gronwall’s inequality. Let | · | denote the Euclidean norm on vectors, or the

Euclidean operator norm on matrices.

Proposition 2.2.7. Let Ki : [t0, t1] → Rd×d, i = 1, 2, be bounded and measurable with

|K1(t)| ≤ L, and let fi : [t0, t1]→ Rd, i = 1, 2, be integrable. Let xi : [t0, t1]→ Rd, i = 1, 2,

be continuous weak solutions to

x′i(t) = Ki(t)xi(t) + fi(t)

and set C = supt∈[t0,t1] |x2(t)|. Then

|x1(t)− x2(t)| ≤|x1(t0)− x2(t0)|eL(t−t0)

+

∫ t

t0

(
C|K1(s)−K2(s)|+ |f1(s)− f2(s)|

)
eL(t−s) ds.

Proposition 2.2.8. Let Fi : Rd → Rd, i = 1, 2 be Lipschitz with constant L and let

xi : [t0, t1]→ Rd be C1 solutions to

x′i(t) = Fi(xi(t)).

Suppose also that |F1(x)− F2(x)| ≤ δ for x ∈ x2([t0, t1]). Then

|x1(t)− x2(t)| ≤ |x1(t0)− x2(t0)|eL(t−t0) +
δ

L

(
eL(t−t0) − 1

)
.

Our ultimate goal in this analysis will be to understand the behavior of stable solutions

to (2.1.17), (2.1.18) as ε → 0. It is clear from (2.1.19) and (2.1.4) that first one needs to

study Ar,ε and ρs,r,ε. Certainly Ar,ε(ρ) is a C∞ function of (ρ, r, ε) for ε > 0. Upon reducing

to a first order system in the usual way, Proposition 2.2.6 implies that Ar,0(ρ) and A′r,0(ρ)

are continuous functions of (ρ, r) which restrict to be C∞ on each of {r ≥ ρ} and {r ≤ ρ}.

The same argument as in the proof of Proposition 2.2.5 shows that ∂rAr,0(ρ) is continuous

across ρ = r, so that Ar,0(ρ) is jointly C1 everywhere. Our ultimate interest is in r near π/4,

so fix a small η > 0 and set I = [π/4− η, π/4 + η].
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Proposition 2.2.9. For k = 0, 1, ∂kρAr,ε(ρ) → ∂kρAr,0(ρ) uniformly on compact subsets of

(ρ, r) ∈ [0,∞)×I as ε→ 0. For k ≥ 2, ∂kρAr,ε(ρ)→ ∂kρAr,0(ρ) uniformly on compact subsets

of ([0,∞)× I) ∩ {ρ 6= r} as ε→ 0.

Proof. Reduce (2.1.6) to a first order system in the usual way: set

x =

A
A′

 Kr,ε =

 0 1

−K‖r,ε 0


so that (2.1.6) becomes x′ = Kx, x(0) =

0

1

. The first sentence follows from Proposi-

tion 2.2.7 since K
‖
r,ε −K‖r,0 → 0 in L1

loc([0,∞)) uniformly in r.

The convergence for k ≥ 2 on {ρ < r} is clear since Ar,ε(ρ) is independent of ε ≥ 0 on

that set. Equation (2.1.7) implies that as ε → 0, eventually Ar,ε has the form Ar,ε(ρ) =

a+e
ρ + a−e

−ρ on any compact subset of {ρ > r}. The convergence for k = 0 implies that

a±(r, ε)→ a±(r, 0). The result for k ≥ 2 therefore follows upon differentiation in ρ.

We now turn to geodesics. To streamline the notation we will often write ν = (r, ε),

ν0 = (π/4, 0), µ = (s, r, ε) and µ0 = (0, π/4, 0). For example, we write gν := gr,ε or

γµ := γs,r,ε. Recall that for s ≥ 0, γµ(t) denotes a unit speed geodesic for gν whose distance

from the origin equals s, parametrized so that this minimum distance is achieved at t = 0,

and ρµ(t) = ρ(γµ(t)). For s > 0, ρµ(t) is the solution of (2.1.9) with A = Aν and initial

conditions ρ(0) = s, ρ′(0) = 0, while ρ0,r,ε(t) = t solves the same equation but has initial

conditions ρ(0) = 0, ρ′(0) = 1. Throughout we restrict attention to ε small and r ∈ I, say

(r, ε) ∈ I × [0, ε0] for fixed small positive ε0. Often we consider s to be small, so we also

fix a small s0 > 0 and in these situations we will assume s ∈ [0, s0]. Despite the apparent

difference in the initial conditions, (2.1.12) shows that ρµ(t) is smooth (and independent of

r, ε) for (t, s) ∈ ([0, t0] × [0, s0]) \ {(0, 0)} for appropriately chosen t0 small, and Lipschitz

continuous for (t, s) ∈ [0, t0] × [0, s0]. The different description of the initial conditions and

the discontinuity of the first derivatives of ρµ(t) at (t, s) = (0, 0) are a reflection of the

singularity of polar coordinates at the origin.
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A first observation is that ρµ(t)→∞ as t→∞ uniformly for (s, r, ε) ∈ [0,∞)×I×[0, ε0].

In fact, (2.1.7) together with the continuity of a± in (r, ε) established in Proposition 2.2.9

imply that there is a > 0 so that A′ν(ρ)/Aν(ρ) ≥ a for (r, ε) ∈ I × [0, ε0] and ρ > 0. It

follows that ρµ(t) ≥ a−1 log(cosh(at)) by the comparison argument in (2.1.10), (2.1.11).

We will analyze (2.1.9) with A = Ar,ε by incorporating r as an initial value and rewriting

as x′ = Fε(x) with

x =


ρ

v

r

 , Fε(x) =


v

A′r,ε(ρ)

Ar,ε(ρ)
(1− v2)

0

 (2.2.2)

and with initial conditions

x(0) =


s

0

r

 if s > 0, x(0) =


0

1

r

 if s = 0.

Our starting point is the following.

Lemma 2.2.10. ρµ(t) is a continuous function of (t, s, r, ε) ∈ [0,∞) × [0,∞) × I × [0, ε0].

ρ′µ(t) and ρ′′µ(t) restrict to continuous functions on
(
[0,∞)× [0,∞) \ {(0, 0)}

)
× I × [0, ε0].

Proof. We have already discussed the regularity near t = s = 0. It is clear that ρs,r,ε(t)

restricts to a C∞ function of (t, s, r, ε) ∈
(
[0,∞) × [0,∞) \ {(0, 0)}

)
× I × (0, ε0]. Now

F0 is a locally Lipschitz function of x, so ∂ltρs,r,0(t) is a continuous function of (t, s, r) ∈(
[0,∞)× [0,∞) \ {(0, 0)}

)
× I for 0 ≤ l ≤ 2. Proposition 2.2.9 implies that A′r,ε(ρ)/Ar,ε(ρ)

converges to the corresponding function evaluated at ε = 0 uniformly on compact subsets

of (ρ, r) ∈ (0,∞) × I. The fact that ∂ltρs,r,ε → ∂ltρs,r,0 uniformly on compact subsets of

(t, s, r) ∈
(
[0,∞) × [0,∞) \ (0, 0)

)
× I for l = 0, 1 follows from Proposition 2.2.8. The

convergence of ρ′′ as ε→ 0 then follows from the differential equation (2.1.9).

We will need to know similar continuity properties of solutions of (2.1.17) and (2.1.18)

in our analysis of s-derivatives of ρ and in later arguments.
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Lemma 2.2.11. Let Xµ be any one of U‖µ, U⊥µ , V‖µ, or V⊥µ . Then Xµ(t) and X ′µ(t) are

continuous functions of (t, s, r, ε) ∈ [0,∞)× [0,∞)× I × [0, ε0].

Proof. First note that for all (r, ε) ∈ I × [0, ε0], Xµ(t) = sin(t) or cos(t) for (t, s) near (0, 0).

Rewrite (2.1.17) as the first order system x′ = Kx where

x =

X
X ′

 K = Kµ(t) =

 0 1

−K‖ν (ρµ(t)) 0

 , (2.2.3)

and likewise for (2.1.18). The functions K
‖
ν (ρµ(t)) and Kµ(t) are C∞ for (t, s, r, ε) ∈ [0,∞)×

[0,∞) × I × (0, ε0]. So Xµ(t) is also C∞ on this same set. The functions K
‖
r,0(ρs,r,0(t))

and Ks,r,0(t) are piecewise C∞ in (t, s, r) with a jump discontinuity across t = `r(s). So

Proposition 2.2.6 implies that Xs,r,0(t) is also piecewise C∞ with a jump discontinuity in

second derivatives across t = `r(s). Recall from Lemma 2.2.10 that ρs,r,ε and ρ′s,r,ε are

continuous in ε at ε = 0. So K
‖
r,ε ◦ ρs,r,ε −K‖r,0 ◦ ρs,r,0 → 0, Ks,r,ε −Ks,r,0 → 0 in L1

loc([0,∞))

locally uniformly in (s, r). Thus Proposition 2.2.7 implies that xs,r,ε(t)→ xs,r,0(t) uniformly

on compact subsets of [0,∞)× [0,∞)× I.

Next we analyze continuity of higher derivatives of ρµ, including s-derivatives. It will

suffice for our needs to restrict attention to s small, say s ∈ [0, s0] for s0 > 0 small and

fixed (as above). Set R = ([0,∞) × [0, s0]) \ {(0, 0)}. For ε = 0, the problem (2.2.2) falls

into the framework of Proposition 2.2.4 with the surface S given by ρ = r, so T


s

0

r

 =

`r(s) = arccos
(

cos r
cos s

)
. Proposition 2.2.5 shows that ρs,r,0(t) and ρ′s,r,0(t) are C1 functions of

(t, s, r) ∈ R × I and Proposition 2.2.4 implies that ρs,r,0(t) restricts to a C∞ function of

(t, s, r) on each of (R× I) ∩ {0 ≤ t ≤ `r(s)} and (R× I) ∩ {t ≥ `r(s)}.

Proposition 2.2.12. Let k, l ≥ 0. If k + l ≤ 2, then as ε → 0, ∂ks ∂
l
tρs,r,ε(t) converges to

the corresponding function evaluated at ε = 0, uniformly on compact subsets of R × I. If

k + l = 3 and k < 3, then ∂ks ∂
l
tρs,r,ε(t) converges to the corresponding function evaluated at

ε = 0 uniformly on compact subsets of (R× I) \ {t = `r(s)}.
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Proof. The convergence for k = 0, 0 ≤ l ≤ 2 is a specialization of Lemma 2.2.10. The stated

convergence of ρ′′′µ follows upon differentiating (2.1.9) with respect to t.

We claim that

Aν(ρµ(t))∂sρµ(t) = sin(s)U‖µ(t) (2.2.4)

on R × I × [0, ε0]. To see this, one verifies directly via the chain rule and the differential

equations satisfied by A and ρ that Aν(ρµ(t))∂sρµ(t) is a solution (weak solution if ε = 0)

to (2.1.17). (For ε = 0, recall that ρs,r,0(t) and ρ′s,r,0(t) are C1 functions of (t, s, r).) Now

(2.2.4) is easily checked directly for t near 0 and s ∈ [0, s0], where we have explicit formulas

for all involved quantities. So the two sides are solutions of the same differential equation

which agree for t small; hence they are equal.

We use (2.2.4) to reduce the study of ∂sρµ(t) to the study of U‖µ(t). As for the factor

Aν(ρµ(t)), Proposition 2.2.9 and Lemma 2.2.10 imply that Aν(ρµ(t)) → Ar,0(ρs,r,0(t)) and(
Aν(ρµ(t))

)′
→
(
Ar,0(ρs,r,0(t))

)′
uniformly on compact subsets of R×I. So we deduce from

(2.2.4) and Lemma 2.2.11 that ∂sρµ(t) → ∂sρs,r,0(t) and ∂sρ
′
µ(t) → ∂sρ

′
s,r,0(t) uniformly on

compact subsets of R × I. The differential equation (2.1.17) implies that U‖r,s,ε′′ → U‖r,s,0′′

uniformly on compact subsets of
(
[0,∞)× [0, s0]× I

)
\ {t = `r(s)}. Since

(
Aν(ρµ(t))

)′′
→(

Ar,0(ρs,r,0(t))
)′′

uniformly on compact subsets of (R× I) \ {t = `r(s)}, it follows also that

∂sρ
′′
µ(t)→ ∂sρ

′′
s,r,0(t) uniformly on compact subsets of (R× I) \ {t = `r(s)}.

It remains to analyze ∂2
sρµ(t) and ∂2

sρ
′
µ(t), which we will do by differentiating (2.2.4) with

respect to s. Begin by considering ∂sU‖µ. The equation for U‖µ reduces to a first order system

as in (2.2.3) with X = U‖µ. Define y := ∂sx− ∂sρ
ρ′
Kx on (0,∞)× [0, s0]×I × [0, ε0]. We claim

first that when ε > 0, y solves the equation

y′ = Ky + f(t), where f(t) = −
(
∂sρ

ρ′

)′
Kx. (2.2.5)

To see this, note that the chain rule implies ρ′∂sK = (∂sρ)K′. Then (2.2.5) follows by direct
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calculation:

y′ =∂sx
′ −
(
∂sρ

ρ′

)′
Kx− ∂sρ

ρ′
K′x− ∂sρ

ρ′
Kx′

=∂s(Kx) + f(t)− (∂sK)x− ∂sρ

ρ′
K2x

=K∂sx+ f(t)− ∂sρ

ρ′
K2x = Ky + f(t).

(2.2.6)

If ε = 0, the same calculation leads to the same conclusion, but with all derivatives inter-

preted in the sense of distributions in (s, t) near t = `r(s). In particular, for ε = 0, y is a weak

solution of (2.2.5), so is continuous across t = `r(s). The value y(t) for t small is indepen-

dent of r, ε. Application of Proposition 2.2.7 therefore shows that ys,r,ε → ys,r,0 uniformly on

compact subsets of (0,∞)× [0, s0]×I. The first component of y is ∂sU‖µ − ∂sρ
ρ′
U‖µ ′. We know

that U‖µ ′ → U‖s,r,0′ uniformly on compact subsets of [0,∞)× [0, s0]× I by Lemma 2.2.11. So

∂sU‖µ → ∂sU‖s,r,0 uniformly on compact subsets of (0,∞)× [0, s0]×I; hence uniformly on com-

pact subsets of [0,∞)× [0, s0]×I. The second component of y is ∂sU‖µ ′+ ∂sρ
ρ′

(K‖◦ρ)U‖µ. It fol-

lows that ∂sU‖µ ′ → ∂sU‖s,r,0′ uniformly on compact subsets of
(
(0,∞)×[0, s0]×I

)
\{t = `r(s)};

hence uniformly on compact subsets of
(
[0,∞)× [0, s0]× I

)
\ {t = `r(s)}.

Since ∂s
(
Aν(ρµ(t))

)
= A′ν(ρµ(t))∂sρµ(t) converges uniformly on compact subsets of R×I

to the corresponding expression evaluated at ε = 0, applying ∂s to (2.2.4) shows that ∂2
sρ

converges uniformly on compact subsets of R × I as claimed. Finally, one verifies easily

via the chain rule and what we have already established that ∂s∂t
(
Aν(ρµ(t))

)
converges

uniformly on compact subsets of {t 6= `r(s)}. So applying ∂s∂t to (2.2.4) shows that ∂2
sρ
′

does too.

We remark that it is easily seen from the arguments above that when k+ l = 3 and k < 3,

even though ∂ks ∂
l
tρµ(t) is not uniformly convergent near {t = `r(s)} as ε→ 0, it is uniformly

bounded near this set.

Next consider behavior as t→∞.

Lemma 2.2.13. For t large, ρµ can be written in the form

ρµ(t) = t+ F (e−t, s, r, ε) (2.2.7)
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for a function F satisfying F ∈ C∞([0, 1] × [0, s0] × I × (0, ε0]) and F |ε=0 ∈ C∞([0, 1] ×

[0, s0]× I).

Proof. It must be shown that the function F defined by (2.2.7) has the stated regularity

properties for t large. The geodesic flow ϕt : S∗M → S∗M of an asymptotically hyperbolic

metric g was analyzed in [GGS+]. The proof of Lemma 2.7 of [GGS+] shows that if g is

smooth and non-trapping and u is a defining function for infinity, then for t ≥ 0 one can write

u(π(ϕt(z))) = e−tE(e−t, z) for a smooth positive function E on [0, 1]×S∗M . Here π : S∗M →

M is the projection. Note that under the change of variable u = e−ρ, for A of the form (2.1.7)

the metric g becomes g = ga+,a− = u−2
(
du2 + (a+ + a−u

2)2g̊
)

in a neighborhood U of u = 0.

First let a± be fixed and set Ũa+,a− := {z ∈ S∗ga+,a−M : π(ϕt(z)) ∈ U for all t ≥ 0}. It follows

that ρ(π(ϕt(z))) = − log u(π(ϕt(z))) = t+P (e−t, z) where P = − logE ∈ C∞([0, 1]×Ũa+,a−).

To incorporate the parameters a±, let A denote the set of (a+, a−) which arise as (r, ε) varies

over I × [0, ε0], set S := {(a+, a−, z) : (a+, a−) ∈ A, z ∈ Ũa+,a−} ⊂ R2 × T ∗M , and view P

as defined on [0, 1]× S. The argument of the proof of Lemma 2.7 of [GGS+] carries over to

this setting and establishes that P is smooth on [0, 1]× S.

Fix T large; for t > T we have

F (e−t, s, r, ε) = P
(
e−(t−T ), a+(r, ε), a−(r, ε), ϕT (zs)

)
(2.2.8)

where zs is the point (independent of (r, ε)) in T ∗M corresponding to the initial data for

γµ and ϕ denotes the geodesic flow of gr,ε. Now a+, a− are C∞ functions of r, ε for ε > 0,

and are C∞ functions of r when ε = 0. Likewise, γµ(t) is C∞ in all variables for ε > 0, and

Proposition 2.2.4 implies that γs,r,0(t) is C∞ in (s, r, t) for t large. The conclusion follows.

It is easily verified that for A = a+e
ρ + a−e

−ρ, one has

K⊥(ρ) = −1 + e−2ρG(e−2ρ, a+, a−) (2.2.9)

with G ∈ C∞([0, 1] × A), where, as in the proof of Lemma 2.2.13, A is the set of all

(a+, a−) ∈ R2 which arise for (r, ε) ∈ I × [0, ε0]. Substituting (2.2.7), (2.2.9) into (2.1.19)
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and recalling that K
‖
ν (ρµ(t)) is identically −1 for t large show that for t large,

Ks,r,ε(t) = −1 + e−tH(e−t, s, r, ε) (2.2.10)

where

H(e−t, s, r, ε) =
(
2∂vF − e−t(∂vF )2

)
e−2ρµ(t)G

(
e−2ρµ(t), a+(r, ε), a−(r, ε)

)
. (2.2.11)

Here v = e−t is the first argument of F and ∂vF is evaluated at (e−t, s, r, ε). The function

H clearly satisfies the same conditions that F satisfied in Lemma 2.2.13: H ∈ C∞([0, 1] ×

[0, s0]× I × (0, ε0]) and H|ε=0 ∈ C∞([0, 1]× [0, s0]× I).

Problem 29, p. 104 of [CL55] shows that there is a unique solution Y⊥µ (t) to (2.1.18) for

t large for which limt→∞ e
tY(t) = 1. Moreover, it is not hard to show that the reasoning

in the outlined solution of the cited problem in [CL55] shows that Y⊥µ (t) has the same

regularity in the parameters as Ks,r,ε: Y⊥µ ∈ C∞([T,∞) × [0, s0] × I × (0, ε0]) and Y⊥s,r,0 ∈

C∞([T,∞)× [0, s0]×I) for some large T . For ε > 0, Y⊥µ extends to t ≥ 0 as a solution with

Y⊥µ ∈ C∞([0,∞)× [0, s0]×I × (0, ε0]). For ε = 0 we can apply Proposition 2.2.6 backwards

in time with initial data at t = T to conclude that Y⊥s,r,0 extends to t ≥ 0 as a weak solution

of (2.1.18), which is C1 and piecewise C∞ in (t, s, r), with a jump in second derivatives across

t = `r(s).

Since K
‖
ν (ρµ(t)) is identically −1 for t large uniformly for (s, r, ε) ∈ [0, s0] × I × [0, ε0],

there is a unique solution (weak solution if ε = 0) Y‖µ(t) to (2.1.17) which equals e−t for t

large. This solution Y‖µ extends backwards to [0,∞) with the same regularity properties as

Y⊥µ (t).

Proposition 2.2.14. Let 0 ≤ l ≤ 1, 0 ≤ k ≤ 2 and let Yµ be either Y‖µ or Y⊥µ . As

ε → 0, ∂ks ∂
l
tYs,r,ε(t) → ∂ks ∂

l
tYs,r,0(t) uniformly on compact subsets of [0,∞) × [0, s0] × I for

0 ≤ k + l ≤ 1, and uniformly on compact subsets of
(
[0,∞) × [0, s0] × I

)
\ {t = `r(s)} for

2 ≤ k + l ≤ 3.

Proof. First we claim that for 0 ≤ k ≤ 2, 0 ≤ l ≤ 1, and for fixed large T , ∂ks ∂
l
tYs,r,ε(t) →

∂ks ∂
l
tYs,r,0(t) as ε→ 0 uniformly on [T,∞)× [0, s0]×I. This is clear for Y‖µ since Y‖µ(t) = e−t
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for t large. For Y⊥µ this follows from the same argument in [CL55] proving the existence of

Y⊥µ if we establish that the function H in (2.2.10) satisfies that for 0 ≤ k ≤ 2, 0 ≤ l ≤ 1 and

t large, ∂ks ∂
l
t

(
H(e−t, s, r, ε)

)
is uniformly bounded and continuous in ε up to ε = 0. Recall

that F is given by (2.2.8). Since the equation 2.1.9 for ρ decouples in the equations for the

geodesic flow for gr,ε, it is not hard to see that the argument of Lemma 2.7 of [GGS+] cited in

the proof of Lemma 2.2.13 applies directly to the ρ equation so that in (2.2.8), ϕT (zs) (which

amounts to (ρ, ρ′, θ, θ′)), can be replaced by only (ρµ(T ), ρ′µ(T )) on the right hand side. Since

P and G are smooth, the uniform boundedness and continuity in ε of ∂ks ∂
l
t

(
H(e−t, s, r, ε)

)
for t large follow upon using (2.2.8) to express F in terms of P in (2.2.11), successively

differentiating (2.2.11), applying the chain rule, and recalling Proposition 2.2.12.

Now we use the same sort of argument as in Proposition 2.2.12, but backwards in time.

We write the rest of the proof for Yµ = Y⊥µ ; the argument for Y‖µ is similar. Reduce (2.1.18)

to a first order system x′ = Kx, where

x =

Y
Y ′

 Ks,r,ε(t) =

 0 1

−Ks,r,ε(t) 0


with Ks,r,ε defined by (2.1.19). Our previous results imply that Ks,r,ε → Ks,r,0 in L1([0, T ]),

so Proposition 2.2.7 applied backwards in time with initial condition at t = T shows that

xs,r,ε(t)→ xs,r,0(t) uniformly on [0, T ]× [0, s0]× I. So the convergence also holds uniformly

on [0,∞)× [0, s0]× I. This proves the result for k = 0, 0 ≤ l ≤ 1.

Define y := ∂sx − ∂sρ
ρ′
Kx as in the proof of Proposition 2.2.12. This time the chain rule

gives
∂sρ

ρ′
K′ = ∂sK + κs,r,ε(t)A, (2.2.12)

where

κ = 2
(
ρ′∂sρ

′ − (∂sρ)ρ′′
)(
K‖ ◦ ρ−K⊥ ◦ ρ

)
, A =

0 0

1 0

 .

So the calculation analogous to (2.2.6) via the chain rule shows that

y′ = Ky + f(t) (2.2.13)
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with

f = −
(
∂sρ

ρ′

)′
Kx− κAx, (2.2.14)

and again the equation holds weakly across t = `r(s) when ε = 0. Since Ks,r,ε − Ks,r,0 → 0

and fs,r,ε − fs,r,0 → 0 in L1
loc((0,∞)) as ε → 0, Proposition 2.2.7 implies that ys,r,ε → ys,r,0

uniformly on compact subsets of (0,∞) × [0, s0] × I. Consideration of the first component

shows that ∂sYs,r,ε(t) → ∂sYs,r,0(t) uniformly on compact subsets of (0,∞) × [0, s0] × I

and consideration of the second component shows that ∂sY ′s,r,ε(t)→ ∂sY ′s,r,0(t) uniformly on

compact subsets of
(
(0,∞)× [0, s0]×I

)
\ {t = `r(s)}. Since Kµ(t) = 1 for t small uniformly

in (s, r, ε), the differential equation (2.1.18) implies that the uniform convergence extends

down to t = 0. This proves the result for k = 1, 0 ≤ l ≤ 1.

For k = 2, set

z = ∂sy −
∂sρ

ρ′
Ky +

(
∂sρ

ρ′

)′
∂sρ

ρ′
Kx+

∂sρ

ρ′
κAx. (2.2.15)

We claim that z′ = Kz + h(t), where h(t) = hs,r,ε(t) is given by

h(t) =−
(
∂sρ

ρ′

)′
∂sρ

ρ′
K2x− ∂sρ

ρ′
κBx+K

[(
∂sρ

ρ′

)′
∂sρ

ρ′
x

]′
−
(
∂sρ

ρ′

)′
Ky

− κAy − ∂sρ

ρ′
Kf − ∂2

st

(
∂sρ

ρ′

)
Kx−

(
∂sρ

ρ′

)′
K∂sx− κA∂sx

− 2
[(
∂s −

∂sρ

ρ′
∂t
)(
ρ′∂sρ

′ − (∂sρ)ρ′′
)]

(K‖ ◦ ρ−K⊥ ◦ ρ)Ax

+ 2

(
∂sρ

ρ′

)′
κAx+

∂sρ

ρ′
κAx′

and we have set B =

1 0

0 0

. Given the claim, the proof is concluded by the same sort

of reasoning as above. Note that our previous results imply that hs,r,ε → hs,r,0 uniformly

on compact subsets of
(
(0,∞) × [0, s0] × I

)
\ {t = `r(s)}, and hs,r,ε is uniformly bounded

on compact subsets of (0,∞) × [0, s0] × I. So K and h converge in L1
loc((0,∞)). Thus

Proposition 2.2.7 shows that zs,r,ε → zs,r,0 uniformly on compact subsets of (0,∞)×[0, s0]×I.

According to (2.2.15), z − ∂sy is the sum of three terms, each of which converges uniformly

on compact subsets of
(
(0,∞) × [0, s0] × I

)
\ {t = `r(s)}. So ∂sy also converges uniformly
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on compact subsets of
(
(0,∞) × [0, s0] × I

)
\ {t = `r(s)}. And ∂sy − ∂2

sx = −∂s
(
∂sρ
ρ′
Kx
)

converges uniformly on compact subsets of
(
(0,∞) × [0, s0] × I

)
\ {t = `r(s)}, so ∂2

sx does

too. Again the differential equation (2.1.18) implies that the uniform convergence extends

to t = 0.

The proof that z′ = Kz+h(t) is a calculation similar to (2.2.6), (2.2.13) but involving more

terms. Differentiate (2.2.15) with respect to t, expand the differentiations using the Leibnitz

rule, substitute (2.2.13) for the two occurrences of y′ and (2.2.12) for the two occurrences of

∂sρ
ρ′
K′ on the right-hand side, and collect terms. One obtains

z′ =K
(
∂sy −

∂sρ

ρ′
Ky
)

+ ∂sf −
(
∂sρ

ρ′

)′
Ky − κAy − ∂sρ

ρ′
Kf

+

(
∂sρ

ρ′

)′
(∂sK)x+ 2

(
∂sρ

ρ′

)′
κAx+K

[(
∂sρ

ρ′

)′
∂sρ

ρ′
x

]′
+
∂sρ

ρ′
κ′Ax+

∂sρ

ρ′
κAx′.

Now substitute

∂sy −
∂sρ

ρ′
Ky = z −

(
∂sρ

ρ′

)′
∂sρ

ρ′
Kx− ∂sρ

ρ′
κAx

from (2.2.15) in the first term on the right-hand side, expand ∂sf by differentiating (2.2.14),

and compare terms to obtain

z′ −Kz − h(t)

=

[(
∂sρ

ρ′
κ′ − ∂sκ

)
+ 2
[(
∂s −

∂sρ

ρ′
∂t
)(
ρ′∂sρ

′ − (∂sρ)ρ′′
)]

(K‖ −K⊥) ◦ ρ
]
Ax.

Finally, observe that the right-hand side vanishes.

It is easily checked that for µ0 = (0, π/4, 0) the decaying solution Y‖µ0 = Y⊥µ0
=: Yµ0

is given by Y0,π/4,0(t) =


√

2e−π/4 cos(t), 0 ≤ t ≤ π/4

e−t, t ≥ π/4

. Since Yµ0(0) > 0, it follows from

continuity that Y‖µ(0) > 0, Y⊥µ (0) > 0 for all µ sufficiently close to µ0. For such µ we

define W‖µ(t) = Y‖µ(t)/Y‖µ(0) and W⊥µ (t) = Y⊥µ (t)/Y⊥µ (0) so that W‖µ, W⊥µ are the decaying
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solutions satisfying Wµ(0) = 1. These Wµ inherit the continuity properties of Yµ stated in

Proposition 2.2.14.

In the sequel we will need the following lemma.

Lemma 2.2.15. There exists T > 0 so that K
‖
ν (ρµ(t)) < 0 and Kµ(t) < 0 for (t, s, r, ε) ∈

[T,∞)× [0,∞)× I × [0, ε0].

Proof. Since ρµ(t) → ∞ as t → ∞ uniformly for µ = (s, r, ε) ∈ [0,∞) × I × [0, ε0] and

Kµ(t) is a convex combination of K
‖
ν (ρµ(t)) and K⊥ν (ρµ(t)), it suffices to show that there

exists ρ0 independent of ν = (r, ε) ∈ I × [0, ε0] so that K
‖
ν (ρ) < 0 and K⊥ν (ρ) < 0 for

ρ ≥ ρ0. For K
‖
ν this is clear since K

‖
ν (ρ) = −1 for ρ > r + ε. Equation (2.1.7) and the

continuity of a± in (r, ε) show that we can choose ρ0 independent of ν ∈ I × [0, ε0] so that

A′ν(ρ0) > 1. The differential equation for Aν implies that A′ν(ρ) ≥ A′ν(ρ0) > 1 for ρ ≥ ρ0.

Then K⊥ν (ρ) = A−2
ν (ρ)

(
1− (A′ν(ρ))2

)
< 0 as desired.

Lemma 2.2.16. W‖µ(t) > 0 and W⊥µ (t) > 0 for all t ≥ 0 and for all µ sufficiently near µ0.

Proof. We suppress the superscripts ‖, ⊥; the argument is the same for both. Recall the

solution Vµ with initial conditions Vµ(0) = 0, V ′µ(0) = 1. The WronskianWµV ′µ−W ′µVµ = 1.

We will show below that Vµ(t) > 0 for all t > 0. Given this, it follows that W ′µ(t) < 0 at

every t for which Wµ(t) = 0. The vanishing of Wµ(t) for any t is therefore inconsistent with

the fact that Wµ is asymptotic to a positive multiple of e−t as t→∞.

Now we show that Vµ(t) > 0 for all t > 0 for µ sufficiently close to µ0. Vµ0 is identified in

(2.1.21) (take `(s) = π/4) and clearly is positive on (0,∞). Choose T as in Lemma 2.2.15.

Continuity (from Lemma 2.2.11) and the fact that Vµ(t) = sin(t) for t small imply that there

is a neighborhood of µ0 for which Vµ > 0 and V ′µ > 0 on (0, T ]. The differential equation

(2.1.17) or (2.1.18) implies that Vµ > 0 on [T,∞) as desired.

Proposition 2.2.17. Let Wµ(t) be either W‖µ(t) or W⊥µ (t). Then ∂s(W ′µ(0))
∣∣
s=0

= 0 and

there exist a neighborhood U of (π/4, 0) and σ > 0 such that if (r, ε) ∈ U and 0 ≤ s ≤ σ,

then ∂2
s (W ′µ(0)) < 0.
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Proof. For the first statement we actually show ∂s(Wµ(t))
∣∣
s=0

= 0 for all t. It is clear from

(2.2.4) that ∂sρ
∣∣
s=0

= ∂sρ
′
∣∣
s=0

= 0. In case Wµ = W⊥µ , if ε > 0 differentiation of (2.1.18)

shows that ∂sWµ|s=0 is also a solution of (2.1.18). This holds in the weak sense when ε = 0

by the reasoning in the proof of Proposition 2.2.14. Since ∂sWµ|s=0 vanishes as t → ∞, it

must be a multiple ofWµ. Since ∂sWµ(0)|s=0 = 0 andWµ(0) = 1, the multiple must be zero.

The same argument applies to Wµ =W‖µ upon differentiation of (2.1.17).

For the second statement, it suffices to show that ∂2
s (W ′s,π/4,0(0))|s=0 < 0 by Proposi-

tion 2.2.14. Again consider first W = W⊥ and suppress writing ⊥ on all quantities below.

For s small we can write Ws := Ws,π/4,0 as a linear combination of the solutions Us and Vs
given by (2.1.24), (2.1.25). By first considering the asymptotics as t→∞ and then the value

at t = 0, one finds that for s > 0 small

Ws = Us − csc(s) cot(Θ∞(s))Vs

where Θ∞ is given by (2.1.26). Hence W ′s(0) = − csc(s) cot(Θ∞(s)). Evaluation of (2.1.26)

gives Θ∞(0) = π/2 and (2.1.27) shows that ∂sΘ∞ = −s2/2 + O(s3). Thus Θ∞(s) = π/2 −

s3/6 +O(s4) so that cot(Θ∞(s)) = s3/6 +O(s4). This gives ∂2
sW ′s(0)|s=0 = −1/3 as desired.

For the second caseW =W‖, writeWs as a linear combination of the solutions (2.1.20) and

(2.1.21) and find, also using (2.1.13),

Ws = Us −
1−

√
cos(2s)

1 +
√

cos(2s)
Vs,

so that W ′s(0) = −1−
√

cos(2s)

1+
√

cos(2s)
. This time there are no indeterminants and one finds without

difficulty ∂2
sW ′s(0)|s=0 = −1.

We will use the next proposition to rule out interior conjugate points for s near 0.

Proposition 2.2.18. Let f ∈ L1(R) be an even function and suppose W is a C1 weak

solution to

W ′′(t) + (−1 + f(t))W(t) = 0 (2.2.16)
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with W(t) > 0 for t ≥ 0 and limt→∞W(t) = 0. There are no nontrivial solutions of (2.2.16)

vanishing at two distinct values of t if and only if W ′(0) ≤ 0.

Proof. First assume that W ′(0) ≤ 0. By the Sturm Separation Theorem, all solutions of

(2.2.16) vanish at most once if there exists one solution of (2.2.16) that never vanishes, so

it is enough to show that W(t) 6= 0 for all t. If W ′(0) = 0 then W(|t|) is a non-vanishing

C1 solution of (2.2.16), so suppose W ′(0) < 0 and let t0 < 0 be such that W(t0) = 0 for the

sake of contradiction. Define V : R→ R by V(t) =W(t)−W(−t). Then V satisfies (2.2.16)

by evenness of f . Since V(−t0) > 0, V(0) = 0 and V ′(0) < 0, there exists 0 < t1 < −t0
with V(t1) = 0. This contradicts the Sturm Separation Theorem, sinceW and V are linearly

independent and W > 0 on [0,−t1].

For the converse, suppose that no solutions of (2.2.16) vanish twice and W ′(0) > 0. We

can normalize to assume W(0) = 1. Let U denote the solution of (2.2.16) with U(0) = 1

and U ′(0) = 0, which is even by evenness of f . We claim that U vanishes for some positive

t, hence twice. Suppose this is not the case, i.e. U > 0 on R. We have 0 < U(t) < W(t)

for all t > 0; otherwise the function W − U would vanish at least twice on [0,∞). We

conclude that limt→∞ U(t) = 0 and hence all solutions of (2.2.16) decay as t → ∞. This is

a contradiction: Problem 29 in p. 104 of [CL55] implies that there are solutions of (2.2.16)

which grow exponentially as t→∞.

Finally we can prove Propositions 2.2.1, 2.2.2 and 2.2.3.

Proof of Proposition 2.2.1. It is easy to check that for gr,0 the decaying solution on radial

geodesics is given for t ≥ 0 by

Y0,r,0(t) =

e
−r( cos(t− r)− sin(t− r)

)
t ≤ r

e−t t ≥ r

.

(Since Y‖0,r,ε = Y⊥0,r,ε, we suppress the ‖.) So Y ′0,r,0(0) = e−r
(

sin(r) − cos(r)
)
. If r1 <

π/4 < r2, then Y ′0,r1,0(0) < 0 < Y ′0,r2,0(0) and we can choose r1 and r2 as close to π/4 as

we like. Continuity (from Proposition 2.2.14) implies that if ε is small enough, then also
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Y ′0,r1,ε(0) < 0 < Y ′0,r2,ε(0). The mean value theorem gives the existence of r, r1 < r < r2,

with Y ′0,r,ε(0) = 0.

Proof of Proposition 2.2.2. Choose σ and U so that the conclusion ∂2
s (W ′µ(0)) < 0 for (r, ε) ∈

U and 0 ≤ s ≤ σ of Proposition 2.2.17 holds for both W‖µ and W⊥µ . The hypothesis

Y‖0,r,ε′(0) = 0 certainly implies that W‖0,r,ε′(0) = 0, and also we have W⊥0,r,ε′(0) = 0 since

W‖0,r,ε = W⊥0,r,ε. Combining this with ∂s
(
W ′s,r,ε(0)

)∣∣
s=0

= 0, it follows that W ′s,r,ε(0) ≤ 0 for

0 ≤ s ≤ σ for both W‖µ and W⊥µ . Proposition 2.2.18 then implies that along any geodesic

γµ ⊂ Σγ with 0 ≤ s ≤ σ, no nontrivial normal Jacobi field which is either tangent to Σγ

or normal to Σγ can vanish twice. Proposition 2.1.4 shows that no nontrivial normal Jacobi

field can vanish twice, just as in the proof for gπ/4,0. Hence gr,ε has no interior conjugate

points on a geodesic γµ for which 0 ≤ s ≤ σ.

Proof of Proposition 2.2.3. First we claim that there exists S > 0 so that for any (r, ε) ∈

I × [0, ε0], gr,ε has no interior conjugate points on any geodesic γs,r,ε with s ≥ S. To see

this, recall that we showed in the proof of Lemma 2.2.15 that there is ρ0 > 0 independent

of ν ∈ I × [0, ε0] so that K
‖
ν (ρ) < 0 and K⊥ν (ρ) < 0 for ρ ≥ ρ0. Since for any (r, ε),

s = mint∈R ρs,r,ε(t), we know that if s ≥ ρ0, then ρµ(t) ≥ ρ0 for all t ∈ R. It follows that

K
‖
ν (ρµ(t)) < 0 and Kµ(t) < 0 for t ∈ R so long as s ≥ ρ0 and (r, ε) ∈ I × [0, ε0]. Since the

equation Y ′′ = 0 has a nonvanishing solution on R, the Sturm Comparison Theorem implies

that if s ≥ ρ0 and (r, ε) ∈ I × [0, ε0], then no nontrivial solution of (2.1.17) or (2.1.18) can

vanish twice. This gives the claim with S = ρ0 upon recalling Proposition 2.1.4.

We will now show that given any σ > 0, there is a neighborhood V of (π/4, 0) such

that U‖µ(t) and U⊥µ (t) are positive for all t ∈ R for (r, ε) ∈ V and σ ≤ s ≤ S, thus excluding

nontrivial solutions vanishing twice by the Sturm Separation Theorem. It suffices to consider

t ≥ 0 since U‖µ(t) and U⊥µ (t) are even. Choose T as in Lemma 2.2.15. We showed in the

proofs of Lemmas 2.1.6 and 2.1.7 that U‖s,π/4,0(t) and U⊥s,π/4,0(t) are everywhere positive for

any s ≥ 0, and that analysis also shows that these solutions grow exponentially as t → ∞

uniformly for s ∈ [σ, S]. Increasing T if necessary, continuity (from Lemma 2.2.11) implies
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that there is a neighborhood V of (π/4, 0) and c > 0 so that U‖µ(t) ≥ c, U⊥µ (t) ≥ c for

0 ≤ t ≤ T , (r, ε) ∈ V and 0 ≤ s ≤ S, and also U‖µ ′(T ) > 0, U⊥µ ′(T ) > 0 for (r, ε) ∈ V and

σ ≤ s ≤ S. The differential equations satisfied by U‖µ and U⊥µ then imply that the solutions

stay positive for t > T .
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Chapter 3

STABILITY ESTIMATES FOR THE X-RAY TRANSFORM ON
SIMPLE AH MANIFOLDS

In this chapter we show Theorem 3, a stability estimate for the normal operator of the

X-ray transform on a simple AH manifold, using the 0-pseudodifferential calculus of Mazzeo

and Melrose ([MM87]). The chapter is organized as follows: in Section 3.1 we provide

some background on the geodesic flow and the X-ray transform on AH manifolds following

[GGS+]. Section 3.2 contains background material on the 0-geometry and 0-calculus that

will be needed later. In Section 3.3 we prove a lemma related to the exponential map on a

simple AH manifold and use it to analyze the distance function and show that the normal

operator Ng is an elliptic pseudodifferential operator in the 0-calculus. In Section 3.4 we

identify the model operator of Ng, which is invertible by the work of Berenstein and Casadio

Tarabusi [BC91]. Finally, in Section 3.5 we construct a parametrix for Ng, use it to show

boundary regularity for elements in its nullspace, and prove Theorem 3. Throughout the

chapter we use Einstein notation, with Latin indices running from 0 to n and Greek indices

from 1 to n.

3.1 Geodesic Flow of AH Manifolds and the X-Ray Transform

As already discussed briefly in the Introduction, the behavior of the geodesic flow on an AH

manifold is more complicated compared to the case of a compact manifold with boundary.

The orbits of the geodesic flow in the cotangent bundle of a non-trapping compact manifold

with boundary X can be parametrized using the “incoming boundary”, ∂−SX := {(z, ξ) ∈

S∗X : z ∈ ∂X and ξ(ν) < 0}, where ν stands for the outward pointing normal. An analogous

way of parametrizing the geodesic flow in the AH setting was formulated in [GGS+] and we
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recall it in this section. Most of this section is based on material there.

Let (M̊n+1, g) be a non-trapping AH manifold, with M̊ being the interior of a compact

manifold with boundary M (note that the notation of this chapter differs from the previous

ones). Recall from the Introduction that a conformal representative h in the conformal

infinity of g determines a boundary defining function x for ∂M , called geodesic boundary

defining function associated to h, such that x2g
∣∣
T∂M

= h and |dx|x2g = 1 near ∂M . Then

via the flow of its gradient, x induces a product decomposition of a collar neighborhood of

∂M as [0, ε)x × ∂M , in terms of which the metric is written in normal form near ∂M

g =
dx2 + hx

x2
, (3.1.1)

where hx is a smooth 1-parameter family of metrics on ∂M satisfying h0 = h. Choosing

coordinates yα for ∂M near a boundary point we can write g =
dx2+(hx)αβdy

αdyβ

x2 .

The space of geodesics on M̊ can be parametrized by introducing an appropriate extension

of the unit cosphere bundle S∗M̊ = {(z, ξ) ∈ T ∗M̊ : |ξ|g = 1} down to ∂M . Recall that

Melrose’s b-cotangent bundle (see [Mel93]) is a smooth bundle overM with natural projection

π, canonically isomorphic with T ∗M̊ over M̊ and trivialized locally near the boundary by

(dx/x, dy1, . . . , dyn). Thus via the identification T ∗M̊ ↔ (bT ∗M)◦, S∗M̊ can be viewed as a

subset of (bT ∗M)◦ given near ∂M by {(z, ξ = ζ dx
x

+ ηαdy
α) ∈ (bT ∗M)◦ : ζ

2
+ x2|η|2hx = 1}.

Hence the closure of S∗M̊ in bT ∗M is a smooth embedded non-compact submanifold of

bT ∗M with disconnected boundary; we denote this submanifold by S∗M . Moreover, the

Hamiltonian vector field X on S∗M̊ associated with the metric Lagrangian Lg = |ξ|2g/2 can

be written as X = xX, where X extends to be smooth on S∗M and transversal to its

boundary: in coordinates it takes the form

X = ζ∂x + xhαβx ηα∂yβ −
(
x|η|2hx +

1

2
x2∂x|η|2hx

)
∂ζ −

1

2
x∂yα |η|2hx∂ηα .

The flow of X is incomplete and, since X and X are related by multiplication by a scalar

function, their integrals curves in S∗M̊ agree up to reparametrization. Orbits of the flow of

X can be parametrized by their “incoming” covector, that is, each orbit can be identified
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with its intersection with the connected component of ∂S∗M on which X is inward pointing.

This component, often referred to as the incoming boundary, will be denoted by ∂−S
∗M and

it can be written as ∂−S
∗M = {(z, ξ = ζ dx

x
+ ηαdy

α) ∈ bT ∗M : x = 0, ζ = 1}. The definition

of the outcoming boundary ∂+S
∗M is analogous, except ζ = −1 there. Both of those sets

are invariant subsets of bT ∗M
∣∣
∂M

, independent of the choice of coordinates and of g. Given

a choice of conformal representative (which induces a geodesic boundary defining function),

∂±S
∗M can be identified with T ∗∂M via ∓x−1dx+ ηαdyα ↔ ηαdy

α.

The unit cosphere bundle S∗M̊ has a natural measure dλ called the Liouville measure,

induced by the restriction to S∗M̊ of the 2n+1 form λ = α∧(dα)n, with α the tautological 1-

form on T ∗M̊ . This measure decomposes as dλ = dVgdµg, where dµg is the measure induced

by g on each fiber of S∗M̊ and dVg is the Riemannian volume density on M̊ . As shown

in [GGS+] (Lemma 2.2), xdλ extends from S∗M̊ to a smooth measure on S∗M . Moreover,

ιXλ extends to a smooth 2n-form on S∗M , which restricts to a volume form on ∂−S
∗M ;

the latter agrees with the canonical volume form on T ∗∂M (induced by the symplectic form

there) under the identification described above. We will denote the corresponding measure

on ∂−S
∗M by dλ∂.

Now let f ∈ C∞c (S∗M̊) and ϕt be the flow of the Hamiltonian vector field X on S∗M̊ ,

which is complete. We define the X-ray transform

If(z, ξ) =

∫ ∞
−∞

f(ϕt(z, ξ))dt ∈ C∞X (S∗M̊), (3.1.2)

where the space C∞X (S∗M̊) consists of smooth functions on S∗M̊ constant along the orbits

of X. Since C∞c (M̊) can be naturally viewed as a subset of C∞c (S∗M̊) via pullback, (3.1.2)

reduces to the usual X-ray transform on C∞c (M̊) viewed as an element of C∞X (S∗M̊). Now as

we mentioned before the vector field X = x−1X extends to be smooth on S∗M and transverse

to ∂S∗M . This implies that any u ∈ C∞X (S∗M̊) extends smoothly to S∗M down to ∂±S
∗M :

by transversality, the flow of X running forward and backward can be used to identify a

neighborhood of any point in ∂∓S
∗M respectively with a subset of [0, ε)t × ∂∓S∗M ; then in

terms of this decomposition u is independent of t and thus extends smoothly down to t = 0.
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Therefore the restriction u
∣∣
∂±S∗M

∈ C∞(∂±S
∗M) is well defined; conversely, any function in

C∞(∂±S
∗M) can be extended off of ∂±S

∗M to be constant along the orbits of X in S∗M ,

and hence also those of X in S∗M̊ , thus yielding an element of C∞X (S∗M̊). This discussion

implies that we have an isomorphism

C∞X (S∗M̊)→ C∞(∂−S
∗M) (3.1.3)

and both spaces are also isomorphic to C∞
X

(S∗M) = C∞(S∗M) ∩ kerX. Note that due to

these facts (3.1.2) can also be regarded as an element of C∞
X

(S∗M), and of C∞(∂−S
∗M)

upon restricting. In fact, the discussion on short geodesics in [GGS+, Section 2.2] indicates

that the range of I is smaller than C∞
X

(S∗M) whenever acting on C∞c (S∗M̊) (or C∞c (M̊)).

Indeed, it follows from there that given any compact set K ⊂ SM̊ there exists a compact set

K ′ ⊂ ∂−S
∗M such that any integral curve of X starting at (z, ξ) 6∈ K ′ does not intersect K.

Moreover, given a compact K ′ ⊂ ∂−S
∗M , the union of all integral curves of X starting at K ′

forms a compact subset of S∗M . This allows us to conclude that I : C∞c (S∗M̊)→ C∞
c,X

(S∗M),

where C∞
c,X

(S∗M) = C∞c (S∗M) ∩ ker(X).

The X-ray transform can be expressed using the flow ϕτ of X. As already mentioned, ϕτ

is not complete and it is a reparametrization of the flow ϕt of X in S∗M̊ : for (z, ξ) ∈ S∗M̊

one has ϕτ (z, ξ) = ϕt(z, ξ) with t(τ, (z, ξ)) =
∫ τ

0
dσ

x◦ϕσ(z,ξ)
. Moreover, for each (z, ξ) ∈ S∗M

there exist finite τ±(z, ξ) ≥ 0 such that ϕ±τ±(z,ξ)(z, ξ) ∈ ∂±S∗M . Thus for f ∈ C∞c (S∗M̊)

(or f ∈ C∞c (M̊)) (3.1.2) can be rewritten as

If(z, ξ) =

∫ τ+(z,ξ)

0

f(ϕτ (z, ξ))
dτ

x ◦ ϕτ (z, ξ)
∈ C∞

c,X
(S∗M).

One can identify a formal adjoint I∗ of I on appropriate function spaces using suitably

chosen inner products. By [GGS+, Lemma 3.6], there is an analog of Santaló’s formula:∫
S∗M̊

f dλ =

∫
∂−S∗M

If dλ∂, f ∈ C∞c (S∗M̊). (3.1.4)

Note that this implies that I also extends continuously as an operator I : L1(S∗M̊ ; dλ) →

L1(∂−S
∗M ; dλ∂) (where the isomorphism (3.1.3) is used implicitly). We define an inner
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product on C∞
c,X

(S∗M): for u1, u2 ∈ C∞c,X(S∗M) let

〈u1, u2〉∂ :=

∫
∂−S∗M

u1 u2 dλ∂,

where on the right hand side u1, u2 are restricted to ∂−S
∗M ; we will generally not write this

restriction explicitly. Now consider the X-ray transform viewed as an operator I : C∞c (M)→

C∞
c,X

(S∗M) and define the operator I∗ : C∞
c,X

(S∗M)→ C∞(M̊) by

I∗u(z) =

∫
S∗zM̊

u dµg, u ∈ C∞
c,X

(S∗M).

Considering real valued functions f ∈ C∞c (M̊) and u ∈ C∞
c,X

(S∗M), we use (3.1.4) to compute

〈u, If〉∂ =

∫
∂−S∗M

u If dλ∂ =

∫
∂−S∗M

I(uf) dλ∂

=

∫
S∗M̊

u fdλ =

∫
M̊

(∫
S∗zM̊

u dµg

)
f(z)dVg(z) = 〈I∗u, f〉L2(M ;dVg). (3.1.5)

This computation implies that with the stated inner products and function spaces I∗ is a

formal adjoint for I.

We will later need to consider the X-ray transform and the normal operator Ng = I∗I

acting on functions that live in weighted L2 spaces. The target space of I will also have to

be an appropriately weighted L2 space and as will become apparent soon it is more natural

for this discussion to view If as a function on ∂−S
∗M . Restriction to ∂−S

∗M induces an

isometry between C∞
c,X

(S∗M) and C∞c (∂−S
∗M) with respect to the the inner product 〈·, ·〉∂

and the L2(∂−S
∗M ; dλ∂) inner product respectively, so (3.1.5) can also be rewritten as

〈u, If〉L2(∂−S∗M ;dλ∂) = 〈I∗u, f〉L2(M ;dVg), f ∈ C∞c (M̊), u ∈ C∞
c,X

(S∗M). (3.1.6)

By [GGS+, Lemma 3.8] I extends to a bounded operator I : | log x|−βL2(S∗M̊ ; dλ) →

L2(∂−S
∗M ; dλ∂) provided β > 1/2. This also implies that I : | log x|−βL2(M ; dVg) →

L2(∂−S
∗M ; dλ∂) is bounded. Hence by (3.1.6) I∗ extends to a bounded operator I∗ :

L2(∂−S
∗M ; dλ∂) → | log x|βL2(M ; dVg) for β > 1/2 (where the action of I∗ on a func-

tion u ∈ L2(∂−S
∗M ; dλ∂) is understood as an action on the extension of u to S∗M so that
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it is constant along the orbits of X). Thus (3.1.6) is valid for u ∈ L2(∂−S
∗M ; dλ∂) and

f ∈ | log x|−βL2(M ; dVg). Moreover, the normal operator is bounded

Ng = I∗I : | log x|−βL2(M̊ ; dVg)→ | log x|βL2(M̊, dVg), β > 1/2.

Using the microlocal properties of Ng that we prove in Section 3.3 and Lemma 3.1.1 below,

we will obtain extensions of I and I∗I to larger spaces of functions, in Corollary 3.3.5.

The following lemma relates a weighted L2 norm of functions in C∞
X

(S∗M) with a

weighted L2 norm of their restriction to ∂−S
∗M . We set 〈η〉h :=

√
1 + |η|2h.

Lemma 3.1.1. Let δ < 0. Then there exists a C = Cδ > 0 such that if u ∈ C∞
X

(S∗M) ∩

xδL2(S∗M̊ ; dλ) one has, using the isomorphism (3.1.3),

1

C
‖u‖〈η〉−δh L2(∂−S∗M ;dλ∂) ≤ ‖u‖xδL2(S∗M̊ ;dλ) ≤ C‖u‖〈η〉−δh L2(∂−S∗M ;dλ∂) <∞.

Proof. First note that C∞
X

(S∗M) ∩ xδL2(S∗M̊ ; dλ) 6= ∅ for δ < 0: indeed, let f ∈ C∞c (M̊),

implying that u = If ∈ C∞
c,X

(S∗M) ⊂ C∞
X

(S∗M). Since xdλ is a smooth measure on S∗M ,

one sees that x−δC∞
X

(S∗M) ⊂ L2
loc(S

∗M ; dλ), implying the claim. Now by (3.1.4), since

u ∈ C∞
X

(S∗M), we have

‖u‖2
xδL2(S∗M̊ ;dλ)

=

∫
S∗M̊

|x−δu|2dλ=

∫
∂−S∗M

I(|u|2x−2δ)dλ∂

=

∫
∂−S∗M

∣∣(I(x−2δ)
)1/2

u
∣∣2dλ∂. (3.1.7)

The second equality is valid because |x−δu|2 ∈ L1(S∗M̊ ; dλ). Let (z, ξ) =
(
(0, y), dx

x
+

ηαdy
α
)
∈ ∂−S∗M with |η|h > C0 > 0. If C0 is sufficiently large, then [GGS+, Lemma 2.8]

implies that x ◦ ϕτ (z, ξ) = |η|−1
h sin(α(z,ξ)(τ)) + O(|η|−2

h ), where α(z,ξ) : [0, τ+(z, ξ)] → [0, π]

is a family of diffeomorphisms depending smoothly on (z, ξ) ∈ ∂−S∗M , with ∂τα(z,ξ)(τ) =

|η|h +O(1), and τ+(z, ξ) = |η|−1π +O(|η|−2
h ) as |η|h →∞. So

I(x−2δ)(z, ξ) =

∫ τ+(z,ξ)

0

x−1−2δ ◦ ϕτ (z, ξ)dτ =

∫ τ+(z,ξ)

0

(
|η|−1

h sin(α(z,ξ)(τ)) +O(|η|−2
h )
)−1−2δ

dτ



91

=

∫ π

0

(
|η|−1

h sin(s) +O(|η|−2
h )
)−1−2δ ds

|η|h +O(1)

=|η|2δh
∫ π

0

(
sin(s) +O(|η|−1)

)−1−2δ ds

1 +O(|η|−1
h )

.

Since
∫ π

0

(
sin(s) +O(|η|−1

h )
)−1−2δ ds

1+O(|η|−1
h )

= aδ + O(|η|−1
h ) with aδ > 0 for δ < 0, we find

that I(x−2δ)((z, ξ)) = aδ|η|2δh + O(|η|−1+2δ
h ) as |η|h → ∞. On the other hand, if |η|h ≤ C0,

I(x−2δ) is uniformly bounded above and below by positive constants depending on δ and C0.

Thus (3.1.7) is comparable to ‖〈η〉δhu‖L2(∂−S∗M ;dλ∂) = ‖u‖〈η〉−δh L2(∂−S∗M ;dλ∂).

3.2 The 0-Geometry and 0-Pseudodifferential Calculus

In this section we provide some of the background we will need later in the microlocal

analysis of the operator Ng. As already mentioned, we will use the framework of the 0-

pseudodifferential calculus of Mazzeo and Melrose to construct a left inverse for Ng up

to compact error, which together with injectivity will lead to a stability estimate. 0-

pseudodifferential operators acting on functions defined on a compact manifold with bound-

ary M have Schwartz kernels that are conveniently characterized and analyzed in the 0-

stretched product of Mazzeo and Melrose. This is a space obtained from M2 by blowing

up the boundary diagonal. In this section we define the operators of interest and describe

their properties that we will need later. The main sources are [MM87] and [Maz91], also see

[EMM91].

Half Densities, the 0-and b-Tangent and Cotangent Bundles

Since half densities will be used later in this section, we discuss them here first. Recall that

given a k-dimensional real vector space V and α ∈ R one can form a 1-dimensional complex

vector space Ωα(V ) consisting of maps dα : Λk(V ) \ {0} → C, called α-densities, with the

property that for λ ∈ R \ {0} and ω ∈ Λk(V ) \ {0} one has dα(λω) = |λ|αdα(ω). Using

the functor V 7→ Ωα(V ) one can construct a line bundle on a manifold X, possibly with
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boundary or with corners1, whose fiber at z is Ωα(TzX). We denote this bundle by Ωα(X)

and denote its smooth sections by C∞(X; Ωα). We will be mostly interested in the case

α = 1/2 (half density bundles), though occasionally we will also use density bundles with

α = 1; in that case we will not write a superscript and instead write Ω(X), so there will be

no confusion with the space of 1-forms, which will not be used anywhere in the text anyway.

For the rest of this discussion we fix α = 1/2. In terms of coordinates (zj), Ω1/2(X) is locally

trivialized by |dz1 ∧ · · · ∧ dzn|1/2 = |dz|1/2. Now for X a smooth manifold with corners

and an integer k let Ω
1/2
{k}(X) be the smooth complex line bundle over X whose smooth

local sections are of the form
∏

j x
−k/2
j ν, where xj are defining functions for the boundary

hypersurfaces of X and ν ∈ C∞(X; Ω1/2). Note that if M is the compactification of an AH

manifold (M̊n+1, g) then Ω
1/2
{n+1}(M) is the geometric half density bundle, globally trivialized

by dV
1/2
g . From now on we denote Ω

1/2
0 (X) := Ω

1/2
{n+1}(X), where n+1 is the dimension of the

AH manifold of interest and for X any of the manifolds with corners we will be examining.

The reason for this notation is that the fiber of Ω
1/2
0 (M) at z ∈M is Ω1/2(0TzM), where 0TM

is the smooth bundle over M canonically isomorphic to TM over M̊ and trivialized locally

near ∂M by x∂x, x∂y1 . . . , x∂yn . Here (x, y1, . . . , yn) are coordinates with x a boundary

defining function (the smooth sections of 0TM are spanned over C∞(M) by the 0-vector

fields V0 discussed in the Introduction). The dual bundle of 0TM is denoted by 0T ∗M and

is trivialized locally near ∂M by dx/x, dy1/x, . . . , dyn/x. Since we will also briefly make use

of elements of the b-geometry, we collect them here: for Xd a manifold with corners we let

Ω
1/2
b (X) = Ω

1/2
{1}(X). Note that the fiber at z ∈ X of Ω

1/2
b (M) is Ω1/2(bTzX), where bTX

is the bundle whose local sections are smooth vector fields tangent to all boundary faces.

That is, if (x1, . . . , xk, y1, . . . , yd−k) are coordinates with xj defining functions for boundary

hypersurfaces then bTX is locally trivialized by x1∂x1 , . . . , xk∂xk , ∂y1 , . . . , ∂yd−k . Its dual is

bT ∗X, trivialized by dx1/x1, . . . , dxk/xk, dy1, . . . , dyd−k (recall that this bundle was already

introduced in the special case M = X). For ? ∈ {∅, b, 0} we will write Ċ∞(X; Ω
1/2
? ) for

1We follow Melrose’s convention of assuming that manifolds with corners have embedded boundary
hypersurfaces; a detailed treatment of analysis on such spaces can be found in [Mel].
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smooth sections of Ω
1/2
? (X) whose derivatives of all orders vanish on ∂X and C−∞(X; Ω

1/2
? ) :=

(Ċ∞(X; Ω
1/2
? ))′. We will also write V? for the space of smooth sections of ?TX.

Conormal and Polyhomogeneous Conormal Distributions

It will be important later to have spaces of functions whose regularity at the boundary re-

mains steady under the action of vector fields tangent to the boundary, and more strongly,

ones that admit asymptotic expansions at the boundary. Let X be a manifold with corners,

with boundary hypersurfaces numbered as Xj, j = 1 . . . , J , and corresponding boundary

defining functions xj. For s = (s1, . . . , sJ) ∈ CJ one defines the space of conormal distribu-

tions of order s by As(X) = {u ∈ C−∞(X) : x−sL1 · · ·L`u ∈ L∞(X), ` ≥ 0 and Lj ∈ Vb(X)}

(here xs =
∏J

j=1(xj)sj). We will refer to functions in
⋃

s∈CJ As(X) as conormal distributions.

We will also need the stronger notion of polyhomogeneity. Let E ⊂ C× N0 be an index

set, that is, a discrete set with the additional properties

|(sj, pj)| → ∞ ⇒ Re(sj)→∞ and (3.2.1)

(sj, pj) ∈ E ⇒(sj +m, pj − `) ∈ E, m ∈ N0 = {0, 1, . . . }, ` = 0, 1, . . . , pj. (3.2.2)

If E ⊂ C×N0 satisfies (3.2.1) we will often write E to denote the smallest index set containing

E. Now let M be a manifold with boundary and u ∈ C−∞(M). A conormal distribution

u is said to be polyhomogeneous with index set E if it admits an asymptotic expansion in a

collar neighborhood [0, ε)x × ∂M of the boundary of the form

u ∼
∑

(sj ,pj)∈E

pj∑
k=0

xsj | log x|kajk(y), ajk ∈ C∞(∂M). (3.2.3)

More precisely, the meaning of the expansion is that if uN denotes the partial sum on

the right hand side of (3.2.3) restricted to (sj, pj) ∈ E with Re(sj) ≤ N then one has

|L1 · · ·L`(u − uN)| ≤ CN,`x
N for ` ≥ 0 and Lj ∈ Vb(M). If u satisfies (3.2.3) we write

u ∈ AEphg. By (3.2.2), the property u ∈ AEphg does not depend on the product decomposition

chosen near ∂M . Note that if E1 ⊂ E2 then AE1
phg ⊂ A

E2
phg.



94

Now if X is a manifold with corners with boundary hypersurfaces Xj, j = 1, . . . , J , denote

by E = (E1, . . . , EJ) a J-tuple of of index sets. The space of polyhomogeneous distributions

AEphg(X) is defined to be those having the form (3.2.3) with E replaced by Ej near the interior

of the boundary hypersurface Xj for j = 1, . . . , J and which have product type expansions

at the intersections of boundary hypersurfaces. More rigorously, AEphg(X) can be defined by

induction on the maximum possible codimension of boundary faces but we will not provide

the details here; we refer the reader to [Maz91]. We now list a few shorthand notations

related to polyhomogeneous distributions, which will be useful later. If E is an index set we

will write E + ` = {(s+ `, p) : (s, p) ∈ E}. The notation Re(E) > C will be used to denote

that Re(s) > C for all (s, p) ∈ E. Furthermore, Re(E) ≥ C will mean by definition that

either Re(E) > C or Re(s) ≥ C for all (s, p) ∈ E and E ∩ ({Re z = C} × {1, 2, . . . }) = ∅.

Therefore Re(E) ≥ 0 suffices to guarantee that u ∈ AEphg is bounded. If it is known that

E ⊂ R×N0 we will often be writing E ≥ C or E > C. In the special case when u ∈ AEphg(X)

is smooth down to a boundary hypersurface Xj and vanishing to order k there we will be

replacing Ej in E by k: in this case Ej ⊂ N0 × {0}.

We also mention distributions conormal to an interior p-submanifold of a manifold with

corners. Recall that a submanifold Y of a manifold with corners Xd is called a p-submanifold

if for each p ∈ Y there exists a domain U of a coordinate chart for X near p with coordinate

functions (x, y) = (x1, . . . , xk, y1, . . . , yd−k) where the xj’s are defining functions of boundary

hypersurfaces of X and Y ∩ U is given as the zero set of a subset of the xj, y`. It is called

an interior p-submanifold if none of the xj’s vanishes identically on Y (in other words, Y

is not contained in a boundary hypersurface of X). Let Y be an interior p-submanifold of

codimension s in a d-dimensional manifold with corners X, and suppose that in coordinates

(x, y) = (x, y′, y′′) as before it is given as the zero set of y′ = (y1, . . . , ys). A distribution u

is said to be conormal of order m ∈ R with respect to Y (denoted u ∈ Im(X, Y )) if there

exists a symbol a ∈ Sm′
(
([0,∞)k × Rd−s−k)× Rs

)
, m′ = m+ d/4− s/2, such that locally

u(x, y) =

∫
Rs
eiy
′·ξ′a(x, y′′, ξ′)dξ′. (3.2.4)
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Here a ∈ Sm′
(
([0,∞)k×Rd−s−k)×Rs

)
means by definition that a satisfies symbol estimates

|Dα
xD

β
y′′D

γ
ξ′a(x, y′′, ξ′)| ≤ Cα,β,γ〈ξ′〉m

′−|γ|, (3.2.5)

where we use the standard notations D = −i∂ and 〈·〉 = (1+|·|2)1/2, and α ∈ Nk
0, β ∈ Nd−k−s

0

and γ ∈ Ns
0 are multi-indices. We remark here that the name conormal for distributions

satisfying (3.2.4) is justified by the fact that they have stable regularity under differentiation

by vector fields tangent to Y ; however the space where they and their derivatives lie is

the somewhat cumbersome Besov space ∞H
−m−d/4
loc , which is the reason why we prefer the

definition given above. We refer the reader to Section 18.2 of [Hör07] for a detailed discussion.

We will also need the space AEphgIm(X, Y ), where again Xd is a manifold with corners and

Y is an interior p-submanifold of codimension s: we say that u ∈ AEphgIm(X, Y ) if u
∣∣
X̊

is

conormal of order m with respect to Y and u has an asymptotic expansion at each boundary

face Xi of X of the form (3.2.3) with index set Ei determined by the collection E and

coefficients ajk conormal of order m + 1/4 with respect to Y ∩ Xi (here the change in the

order of conormality follows Hörmander’s convention; note that dim(Xi) = d− 1).

If E is a vector bundle over X the discussion above can be used to define boundary conor-

mal, interior conormal, polyhomogeneous, and interior conormal-boundary polyhomogeneous

sections E, written as As(X;E), Im(X, Y ;E), AEphg(X;E), and AEphgIm(X, Y ;E).

The Stretched Product

Here we outline the construction of the 0-stretched product, i.e. the blown up space on

which the Schwartz kernels of 0-pseudodifferential operators live. For a detailed exposition

regarding the blow-up construction we refer the reader to [Mel] and specifically for the 0-

stretched product to [MM87]. Let Mn+1 be a compact manifold with boundary as before and

let x be a boundary defining function; then the 0-stretched product M2
0 := [M2; ∂∆ι] is by

definition the space obtained by blowing up the boundary of the diagonal ∆ι = {(z, z) : z ∈

M} (see Figure 3.1). More precisely, let T+
p M = {v ∈ TpM : dx(v) > 0} and let SN++∆ι
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be the inward pointing spherical normal bundle, with fiber at (p, p) ∈ ∂∆ι given by

SN++
(p,p)∂∆ι =

((
(T+

p M)2/T(p,p)∂∆ι
)
\ o
)
/R+, (3.2.6)

where o is the 0 section. Then as a set define M2
0 = (M2 \ ∂∆ι)

⊔
SN++∂∆ι. There is a

natural smooth structure on M2
0 making it into a manifold with corners of codimension up

to 3, such that the blow down map β0 : M2
0 → M2, β0

∣∣
(M2\∂∆ι)

= id, β0

∣∣
SN++

(p,p)
∂∆ι

= (p, p)

becomes smooth. Moreover, smooth vector fields tangent to ∂∆ι lift under the blow down

map to be smooth and tangent to the boundary faces of M2
0 (this is a general fact about

blow-ups, see [Mel]). The set SN++(∂∆ι) ⊂ M2
0 is called the front face and denoted by

B11. We let ∆ι0 = β−1
0 (∆ι \ ∂∆ι), which is an interior p-submanifold of M2

0 , transversal

to the front face. We denote by B10 the left face β−1
0 (∂M ×M) and by B01 the right face

β−1
0 (M × ∂M). We will occasionally refer to B10 and B01 as side faces and we will also be

using the notation x· · to refer to a defining function for B· ·, that is, x10 will be a defining

function for B10 and so on. Moreover, we will be writing AEphg(M2
0 ), E = (E10, E01, E11) to

denote polyhomogeneous distributions on M2
0 with E· · corresponding to the face B· ·.

Figure 3.1: The 0-stretched product.
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We now fix p ∈ ∂M . The subgroup Gp of GL(TpM) that preserves T+
p M and fixes

∂(T+
p M) pointwise induces an invariantly defined free and transitive action on T+

p M . Upon

making a choice of coordinates (x, y) near p (with x again a boundary defining function)

which determine linear coordinates (u,w) on TpM induced by writing v = u∂x +wα∂yα , one

sees that Gp
∼= R+oTp∂M ∼= R+oRn and the action is given by (a, b) ·(u,w) = (au, w+ub).

The group multiplication in Gp is given by (a, b) · (a′, b′) = (aa′, b′ + a′b). The actions of

Gl
p := Gp × Id and Gr

p := Id × Gp on
(
T+
p M

)2
descend to the quotient (3.2.6) and, given

linear coordinates (u,w), (ũ, w̃) on (TpM)2 chosen using two copies of the same coordinate

system on M , we can see that each of the actions is transitive and free on the interior of each

fiber B̊11

∣∣
p

of the front face. Moreover, each fiber of the front face has a canonically defined

singled out point ep, given by ∂∆ι0
∣∣
(p,p)

. Therefore, one obtains diffeomorphic identifications

of B̊11

∣∣
p

with Gl
p
∼= Gr

p
∼= Gp, hence B̊11

∣∣
p

has two group structures, both of which are

canonically isomorphic to Gp and can be intertwined by interchanging the order of the two

factors of
(
T+
p M

)2
. The diffeomorphisms f lp, f

r
p : B̊11

∣∣
p
→ Gp obtained this way are given in

terms of linear coordinates as f lp
(
[(u,w), (ũ, w̃)]

)
=
(
u/ũ, (w − w̃)/ũ

)
, f rp

(
[(u,w), (ũ, w̃)]

)
=(

ũ/u, (w̃ − w)/u
)
. Those diffeomorphisms have equivariance properties: for q ∈ Gp write

ql = (q, id) ∈ Gl
p and qr = (id, q) ∈ Gr

p to obtain as in [MM87, Section 3] that for ω ∈ B̊11

∣∣
p

one has

f lp(ql · ω) = q · f lp(ω), f rp (qr · ω) = q · f rp (ω)

f lp(qr · ω) = f lp(ω) · q−1, f rp (ql · ω) = f rp (ω) · q−1. (3.2.7)

By a computation in coordinates one checks that each choice of inner product on the tangent

space at the identity of the Lie group Gp induces a right invariant hyperbolic metric on Gp,

so (3.2.7) implies that each such choice induces a left Gr
p (resp. Gl

p)-invariant hyperbolic

metric on B̊11

∣∣
p

via f lp (resp. f rp ).

Given an AH metric g and p ∈ ∂M one obtains a canonical hyperbolic metric of curvature

−1 on T+
p M that pulls back to B̊11

∣∣
p

in two ways. If x is a boundary defining function for
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∂M let hp be the metric given at v ∈ T+
p M by

hp
∣∣
v

:= (dx(v))−2g
∣∣
p
, (3.2.8)

where g = x2g and the inner product g
∣∣
p

on TpM is naturally identified with an inner

product on Tv(TpM) for any v ∈ T+
p M . It is easy to check that (3.2.8) does not depend on

the choice of the boundary defining function x. The metric hp can be appropriately pulled

back to B̊11

∣∣
p

in two ways (that result in isometric metrics), as we explain below. Since the

action of Gp on T+
p M is free and transitive, given v ∈ T+

p M one can define a diffeomorphism

f vp : Gp → T+
p M by Gp 3 q 7→ q · v ∈ T+

p M . Thus for each v one obtains a hyperbolic

metric (f vp )∗hp on Gp that is right invariant with respect to the group structure of Gp, as

one can check in coordinates. The right invariance implies that the metric (f vp )∗hp is in fact

independent of v: if for v, v′ ∈ T+
p M and q̃ ∈ Gp one has v = q̃ · v′, then for q ∈ Gp f

v′
p (q) =

(qq̃) · v = Rq̃(q) · v = f vp ◦ Rq̃(q), with Rq̃ denoting right multiplication by q̃ on Gp. Thus

(f v
′

p )∗hp = R∗q̃(f vp )∗hp = (f vp )∗hp. Hence by (3.2.7), hlp := (f lp)
∗(f vp )∗hp and hrp := (f rp )∗(f vp )∗hp

are hyperbolic metrics on B̊11

∣∣
p

which are independent of v ∈ T+
p M , isometric to each other

by construction, and left invariant with respect to the corresponding group structure. We

remark here that d
(
(f lp)

−1 ◦ f rp
)∣∣
ep

= −id as one can check in coordinates, so on Tep(B̊11

∣∣
p
)

one has hlp = hrp.

One can make a choice of coordinates to express the metric hp in (3.2.8) in a convenient

form: fix a conformal representative h0 in the conformal infinity of g and corresponding

geodesic boundary defining function x and complete the gradient ∇gx
∣∣
p

into a g-orthonormal

frame (where as usual g = x2g). Then in terms of the linear coordinates (u,w1, . . . , wn)

induced on T+
p M by this frame, (3.2.8) takes the form hp = u−2(du2 + |dw|2). Similarly,

we can express conveniently the induced metrics on B̊11

∣∣
p
. First, in terms of the linear

coordinates above use v = ∂x = (1, 0) ∈ T+
p M to construct (f vp )∗hp on Gp. Now let U ′ ⊂ TpM

and U ⊂ M be neighborhoods of 0 and p respectively, and ϕ : U ′ → U a diffeomorphism

satisfying ϕ(0) = p, dϕ
∣∣
0

= Id and ϕ(Tp∂M) ⊂ ∂M and consider coordinates (x, y) =

(u,w) ◦ ϕ−1 near p. If (x̃, ỹ) is a copy of (x, y) on the right factor of M2, (x, y, t = x̃/x, Y =
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(ỹ− y)/x) are smooth coordinates near B01∩B11 and away from B10 with (t, Y ) coordinates

on the front face, where ϕ is used to identify points on M2 and on (T+
p M)2 (recall the formal

definition (3.2.6) of B11

∣∣
p
). Tracing though identifications, one sees that hrp = t−2(dt+ |dY |2)

in coordinates (t, Y ). Analogously, using coordinates (x̃, ỹ, s = x/x̃,W = (y − ỹ)/x̃) near

B10 ∩B11 and away from B01 with (s,W ) coordinates on B11

∣∣
p
, hlp = s−2(ds 2 + |dW |2).

The 0-Calculus

In this section Mn+1 is a compact manifold with boundary and x a boundary defining func-

tion, as usual. Throughout this chapter we will be using the 0-calculus of pseudodifferential

operators of Mazzeo-Melrose ([MM87]), a class of operators generalizing and containing the

approximate inverses of elliptic 0-differential operators. As already mentioned, 0-differential

operators of order m ∈ N0, denoted by Diffm0 (M), are the differential operators that can be

written as finite sums of at most m-fold products of vector fields in V0: that is, near ∂M one

has in coordinates as before

P =
∑

j+|α|≤m

aj,α(x, y)(x∂x)
j(x∂y)

α, aj,α ∈ C∞(M)

where we use multi-index notation.

By the Schwartz kernel theorem, operators P : Ċ∞(M ; Ω
1
2
0 )→ C−∞(M ; Ω

1
2
0 ) are in one to

one correspondence with kernels κP ∈ C−∞(M2; Ω
1/2
0 ) (note that π∗l Ω

1/2
0 (M)⊗π∗rΩ

1/2
0 (M) ∼=

Ω
1/2
0 (M2), where πl, πr : M2 → M denote left and right projection respectively). The

Schwartz kernels of operators in the 0-calculus are naturally described in M2
0 . As shown in

[MM87], smooth sections of Ω
1/2
0 (M2) lift via β0 to smooth sections of Ω

1/2
0 (M2

0 ) and hence

for any kernel we have β∗0κP ∈ C−∞(M2
0 ; Ω

1/2
0 ). We begin by defining the small 0-calculus of

order m: let

Ψm
0 (M) 3 P : Ċ∞(M ; Ω

1/2
0 )→ C−∞(M ; Ω

1/2
0 )

be any operator whose Schwartz kernel κP satisfies β∗0κP ∈ AEphgIm(M2
0 ,∆ι0; Ω

1/2
0 ) with

E =
(
∅, ∅, {(0, 0)}

)
, so κP is a section of Ω

1/2
0 (M2

0 ) conormal of order m to ∆ι0, smooth
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down to the front face away from ∆ι0 and vanishing to infinite order at the side faces. We

set Ψ−∞0 (M) =
⋂
m∈R Ψm

0 (M). Note that the kernel of an element in Ψm
0 (M) is given by

an oscillatory integral. This implies that unless the corresponding symbol (see (3.2.4)) is

integrable the kernel is not defined pointwise, however it makes sense as a distribution via

consecutive formal integrations by parts; see, for instance Theorem 1.11 in [GS94]. In our

case, by following the proof of this theorem we see that this amounts to the fact that given

an operator P ∈ Ψm
0 (M) and N ∈ N0 we can write

P =
M∑
j=0

PjQj + P̃ , Pj ∈ Ψm−N
0 (M), Qj ∈ DiffN0 (M), P̃ ∈ Ψ−∞0 (M). (3.2.9)

As hinted by (3.2.4), to any operator P ∈ Ψm
0 (M) corresponds a principal symbol encod-

ing the leading conormal singularity on ∆ι0: one has

σm0 (κP ) ∈ Sm(N∗∆ι0; Ω
1/2
0 (M2

0 )
∣∣
N∗∆ι0

⊗ Ωfiber(N
∗∆ι0))/Sm−1;

that is, the symbol is a symbolic section2 of the bundle Ω
1/2
0 (M2

0 )
∣∣
N∗∆ι

⊗ Ωfiber(N
∗∆ι) ∼=

Ω0(M) ⊗ Ωfiber(N
∗∆ι). Here Ωfiber(N

∗∆ι) is the density on the fibers of N∗(∆ι) and it

arises from computing the invariant Fourier transform (see [Sim90]) of the kernel on the

fibers of N∗∆ι0. Using the canonical identification of N∗∆ι0 ↔ 0T ∗M it can be shown (see

[MM87], [Lau03]) that Ω0(M)⊗Ωfiber(N
∗∆ι) ∼= Ω(0T ∗M), which is canonically trivial, hence

σm0 κP ) can be identified with a symbol σm0 (P ) ∈ S{m}(0T ∗M) := Sm(0T ∗M)/Sm−1, which

we call the principal symbol. Provided there exists a symbol a ∈ S{−m}(0T ∗M) such that

σm0 (P ) · a ≡ 1, P will be called elliptic.

We further define the space of operators whose kernels are smooth in (M2
0 )◦ with polyho-

mogeneous expansions at the boundary faces: P ∈ Ψ−∞,E0 (M) ⇐⇒ β∗0κP ∈ AEphg(M2
0 ; Ω

1/2
0 ),

E = (E10, E01, E11). We finally define the large 0-calculus as the operators with kernels

satisfying β∗0κP ∈ AEphgIm(M2
0 ,∆ι0; Ω

1/2
0 ), for E as before and m ∈ R. We will often write

Ψm,E10,E01

0 (M) to imply that E11 = {(0, 0)}. Note that in this case using a cutoff function

2That is, the symbolic estimates (3.2.5) hold with N∗∆ι0 identified locally near B11 ∩∆ι0 with [0,∞)×
Rn × Rn+1.
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supported near ∆ι0 one sees that

Ψm,E10,E01

0 (M) = Ψm
0 (M) + Ψ−∞,E10,E01

0 (M). (3.2.10)

The rest of the shorthand notations for index sets outlined earlier will apply for Ψm,E
0 ; for

instance P ∈ Ψm,a,E01,E11

0 (M), a ∈ N0, indicates that β∗0 KP is smooth near the interior of

B10 and vanishes at B10 to order a.

The definition of 0-pseudodifferential operators does not depend on the existence of a

metric; however since this is the setting in which we will use them, we fix an AH metric

g on M̊ so that Ω
1/2
0 (M) is canonically trivialized by γ0 = dV

1/2
g , and we write κP =

KP (z, z̃ ) · γ0(z)⊗ γ0(z̃) for P ∈ Ψm,E
0 (M). To clarify the action of P in terms of coordinates

near B11, we choose copies (x, y), (x̃, ỹ) of the same coordinate system on the two factors of

M2 near a point (p, p) ∈ ∂∆ι as before. As already mentioned, (x, y, t = x̃/x, Y = (ỹ−y)/x)

are smooth coordinates in a neighborhood of B11 \B10 and away from B10; in terms of them,

t is a defining function for B01 and x is a defining function for B11. On the other hand,

(x̃, ỹ, s = x/x̃,W = (y − ỹ)/x̃) are valid coordinates away from B01 and in terms of them

s is a defining function for B10. We use the notations β∗0 K
r
P , β∗0 K

l
P for β∗0 KP expressed in

terms of coordinates (x, y, t, Y ) and (x̃, ỹ, s,W ) respectively. Then for P ∈ Ψm,E
0 (M) and

f ∈ Ċ∞(M) we have

P (f ·γ0)(x, y) =

∫
β∗0 K

l
P

(x
s
, y−W

s
x, s,W

)
f
(x
s
, y−W

s
x
)(

det g
(x
s
, y − W

s
x
)) 1

2 |dsdW |
s
·γ0.

(3.2.11)

We interpret the action of a differential operator P ∈ Diffm0 (M) on f ·γ0 as P (f ·γ0) = (Pf)·γ0.

Operators in the large 0-calculus can be composed under compatibility assumptions. The

following proposition follows from Theorem 3.15 in [Maz91] with a change in normalizations.

In this form it can also be found in [Alb].

Proposition 3.2.1. Let P ∈ Ψm,E
0 (M), P ′ ∈ Ψm′,F

0 (M). If Re(E01 + F10) > n then the

composition P ◦ P ′ is defined and P ◦ P ′ ∈ Ψm+m′,W
0 (M), where W is given by

W10 = (F10 + E11)∪E10, W01 = (E01 + F11)∪F01, W11 = (E10 + F01)∪(E11 + F11);
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here the sum and extended union respectively of the index sets E, E ′ are given by

E + E ′ ={(s, p) + (s′, p′) : (s, p) ∈ E, (s′, p′) ∈ E ′},

E∪E ′ =E ∪ E ′ ∪ {(s, p+ p′ + 1) : there exist (s, p) ∈ E, (s, p′) ∈ E ′}.

We also state results regarding mapping properties on polyhomogeneous functions and on

half densities in Sobolev spaces. The following can be proved using Melrose’s Push-forward

Theorem (see Theorem 3.2.3 below), see [Maz91] and [Alb]:

Proposition 3.2.2. Let u ∈ AFphg(M ; Ω
1/2
0 ) and P ∈ Ψm,E

0 (M), m ∈ R. If Re(E01 + F ) > n

then Pu ∈ AF ′phg(M ; Ω
1/2
0 ), where F ′ = E10∪(E11 + F ).

The next proposition contains mapping properties for elements in the large 0-calculus in

terms of weighted Sobolev half densities, denoted by xδHs
0(M ; Ω

1/2
0 ). We remark here that

C∞c (M ; Ω
1/2
0 ) (and thus also Ċ∞(M ; Ω

1/2
0 )) is dense in xδHs

0(M ; Ω
1/2
0 ) for s ≥ 0 (see Lemma

3.9 in [Lee06]) and the inclusion xδ
′
Hm′

0 (M ; Ω
1/2
0 ) ↪→ xδHm

0 (M ; Ω
1/2
0 ) is compact provided

m′ > m and δ′ > δ.3 Proposition 3.2.4 below follows from Corollary 3.23 and Theorem 3.25

in [Maz91] upon taking into account the difference in conventions regarding the definition of

0-pseudodifferential operators and the different densities on which they act; for completeness

we outline part of the proof following the exposition in [Alb], where Melrose’s Push-forward

Theorem is used. An earlier version of this result with our convention also appears in [Maz86],

Corollary 2.53, and another appears in [Alb], though the assumptions regarding the weights

there are stronger than they need to be. We first state the Push-forward Theorem.

Let X, Y be manifolds with corners with embedded boundary hypersurfaces Xj, Yi

respectively, j = 1, . . . , J , i = 1, . . . , J ′, and let ρj, ri be corresponding defining functions.

Then a smooth map f : X → Y is an interior b-map if for each i f ∗ri = h
∏

j ρ
e(i,j)
j ,

e(i, j) ∈ N0 where h ∈ C∞(X) is non-vanishing. For such f the differential extends by

continuity from the interior to define the b-differential bf∗ : bTzX → bTf(z)Y , z ∈ X. The

3Note that the subscript 0 in Hk
0 has to do with the 0-vector fields that generate its norm, and the spaces

Hk
0 (M ; dVg) should not be confused with the Sobolev spaces Hk

0 (Ω) for Ω ⊂ Rn open (i.e. the closure of
C∞c (Ω) in the Hk(Ω) norm), that will not be used anywhere in this chapter.
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interior b-map f is called a b-fibration if its b-differential is everywhere surjective and in

addition for each j there exists at most one i such that e(i, j) 6= 0 (this means that f maps

no boundary hypersurface into a corner).

Theorem 3.2.3 ([Mel]). Let X, Y be manifolds with corners with embedded boundary hy-

persurfaces Xj, Yi, and f : X → Y a b-fibration as before. Also let E = (E1, . . . EJ) be an

index family for X such that Ej corresponds to Xj. If u ∈ AEphg(X; Ωb) and Ej > 0 for each

j such that e(i, j) = 0 for all i (that is, for each j such that Xj is not mapped into ∂Y ), then

f∗u ∈ A
f#(E)

phg (Y ; Ωb),

where f#(E) = (F1, . . . , FJ ′) is the index family defined by

Fi =
⋃

j:e(i,j)6=0

((
s

e(i, j)
, p

)
: (s, p) ∈ Ej

)
,

where Fi corresponds to Yi.

Then one has

Proposition 3.2.4. Let P ∈ Ψm,E
0 (M), m ∈ R. Provided s ∈ R, Re(E01) > n/2 − δ,

Re(E11) ≥ δ′ − δ and Re(E10) > δ′ + n/2 one has that

P : xδHs
0(M ; Ω

1/2
0 )→ xδ

′
Hs−m

0 (M ; Ω
1/2
0 )

is bounded. In particular, if m < 0, Re(E01) > n/2− δ, Re(E11) > 0 and Re(E10) > δ+ n/2

then P : xδHs
0(M ; Ω

1/2
0 )→ xδHs

0(M ; Ω
1/2
0 ) is compact.

Proof. We will show that P : xδL2(M ; Ω
1/2
0 ) → xδ

′
L2(M ; Ω

1/2
0 ) for P ∈ Ψ−∞,E0 (M) and δ, δ′

as in the statement, since this is the only step of the proof that differs from the presentation

in [Alb], and refer the reader there for the general statement. Let βr = πl ◦ β0, βl = πl ◦ β0,

where πl, πr are projections onto the right and left factors of M2 respectively. The maps βl,

βr are b-fibrations and we have β∗l x = x10x11 and β∗r x̃ = x01x11 (as usual x, x̃ are boundary

defining functions for ∂M×M , M×∂M respectively). Recalling that γ0 = dV
1/2
g , by [MM87,



104

Lemma 4.6] we have that ν0 := β∗l γ0 ⊗ β∗rγ0 ∈ C∞(M2
0 ; Ω

1/2
0 ); set νb := (x10x11x01)n/2ν0 ∈

C∞(M2
0 ; Ω

1/2
b ). As before, we write κP = KP (z, z̃ ) · γ0(z)⊗ γ0(z̃) for the Schwartz kernel of

P ; recall that KP is smooth away from ∂∆ι. For u′ = u · γ0 ∈ xδL2(M ; Ω
1/2
0 ), v′ = v · γ0 ∈

x−δ
′
L2(M ; Ω

1/2
0 ) = (xδ

′
L2(M ; Ω

1/2
0 ))′ we compute, using Cauchy-Schwarz,

|(v′, Pu′)| ≤
∫
M2

|xδ′v(z)|
(
x̃

x

)n/4
|KP (z, z̃)|

(x
x̃

)n/4
|x̃−δu(z̃)|x̃δx−δ′γ2

0(z)⊗ γ2
0(z̃) (3.2.12)

≤

(∫
M2

|xδ′v(z)|2
(
x̃

x

)n/2
|KP (z, z̃)|x̃δx−δ′γ2

0(z)⊗ γ2
0(z̃)

)1/2

×
(∫

M2

|KP (z, z̃)|
(x
x̃

)n/2
|x̃−δu(z̃)|2x̃δx−δ′γ2

0(z)⊗ γ2
0(z̃)

)1/2

It now suffices to show

(πl)∗

((
x̃

x

)n/2
|KP |x̃δx−δ

′
γ2

0(z)⊗ γ2
0(z̃)

)
∈ L∞(M ; Ω0), (3.2.13)

(πr)∗

((x
x̃

)n/2
|KP |x̃δx−δ

′
γ2

0(z)⊗ γ2
0(z̃)

)
∈ L∞(M ; Ω0). (3.2.14)

By Theorem 3.2.3, one has

(πl)∗

((
x̃

x

)n/2
|KP |x̃δx−δ

′
γ2

0(z)⊗ γ2
0(z̃)

)

= (βl)∗

((
x01

x10

)n/2
|β∗0KP |x−δ

′

10 x
δ−δ′
11 xδ01(x10x11x01)−nν2

b

)
∈ AFphg(M ; Ωb),

where F = (E11 + δ − δ′ − n)∪(E10 − n − n/2 − δ′), provided Re(E01) > −δ + n/2. Since

AFphg(M ; Ωb) can be identified with AF ′phg(M ; Ω0), where F ′ = F +n, (3.2.13) is true provided

Re(E11) ≥ −δ + δ′ and Re(E10) ≥ n/2 + δ′. Similarly, provided Re(E10) > δ′ + n− n/2

(πr)∗

((x
x̃

)n/2
|KP |x̃δx−δ

′
γ0(z)⊗ γ0(z̃)

)
= (βr)∗

((
x10

x01

)n/2
|β∗0KP |x−δ

′

10 x
δ−δ′
11 xδ01(x10x11x01)−nν2

b

)
∈ AF̃phg(M ; Ωb),

with F̃ = (E11 +δ−δ′−n)∪(E01−n/2+δ−n). As before, (3.2.14) holds if Re(E11) ≥ −δ+δ′

and Re(E01) ≥ n/2−δ. Note that the device of multiplying and dividing by
(
x
x̃

)n/4
in (3.2.12),
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similarly to the proof of Theorem 3.25 in [Maz91], allows us to extend the range of δ, δ′ for

which the result holds.

The Model Operator

Let p ∈ ∂M , where Mn+1 is a compact manifold with boundary. Any operator P ∈ Ψm,E
0 (M)

with Re(E11) ≥ 0 determines an invariantly defined operator Np(P ) : C∞c (T+
p M ; Ω

1/2
0 ) →

C−∞(T+
p M ; Ω

1/2
0 ), which will be called the model operator 4, and which captures the leading

order behavior of the Schwartz kernel of P at the front face. Here C−∞(T+
p M ; Ω

1/2
0 ) =(

C∞c (T+
p M ; Ω

1/2
0 )
)′

. The model operator is closely related to the group structures on the

front face discussed earlier and can be defined independently of the existence of a metric on

M . If M̊ is endowed with an AH metric g and P is an operator depending on g it often

happens that Np(P ) can be identified with the corresponding operator on hyperbolic space:

for instance the model operator of the Laplacian of an AH metric is the hyperbolic Laplacian

on (T+
p M,hp) (see (3.2.8)), as shown in [Maz91]. We will show an analogous result for the

normal operator Ng in Proposition 3.4.1. Below we assume for simplicity that an AH metric

g is fixed, so that the various density bundles are canonically trivial.

Let U ′ ⊂ TpM and U ⊂ M be neighborhoods of 0 and p respectively, and ϕ : U ′ → U

a diffeomorphism with the properties ϕ(0) = p, dϕ
∣∣
0

= Id and ϕ(Tp∂M) ⊂ ∂M . Also let

Rr : T+
p M → T+

p M , r ∈ (0,∞), be the canonical radial action and γ
hp
0 = dV

1/2
hp

, where hp is

given by (3.2.8). Then if P ∈ Ψm,E
0 (M) with Re(E11) ≥ 0 and f · γhp0 ∈ C∞c (T+

p M ; Ω
1/2
0 ) the

model operator is defined by

Np(P )(f · γhp0 ) = lim
r→0

R∗rϕ
∗P (ϕ−1)∗R∗1/r(f · γ

hp
0 ). (3.2.15)

It can be shown (see, for instance [MM87]) that Np(P ) is independent of the choice of

ϕ satisfying the properties listed above. If P =
∑

j,α aj,α(x, y)(x∂x)
j(x∂y)

α ∈ Diffk0(M) its

model operator has a simple expression in terms of linear coordinates (u,w) on T+
p M induced

4As already mentioned, the more common name for the model operator is normal operator. Despite not
following the usual convention for its name, we maintain the traditional notation Np.
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by coordinates (x, y) on M : one has Np(P ) =
∑

j,α aj,α(0, 0)(u∂u)
j(u∂w)α, that is, Np(P ) is

given by “freezing coefficients” at p.

As we already mentioned, each fiber B̊11

∣∣
p

of the front face carries two group structures

isomorphic to the group Gp ⊂ GL(TpM) and hence the front face acts on T+
p M from the

left. So given a distribution on u ∈ C−∞(B̊11

∣∣
p
) one can define an operator on T+

p M by left

convolution; i.e. by

u ∗ f(v) :=

∫
u(q)f(q−1 · v)dH(q), f ∈ C∞c (T+

p M),

where dH is a left invariant Haar measure on B̊11

∣∣
p

(which is determined up to scaling).

A choice of an AH metric on M̊ determines a preferred Haar measure, since it determines

an inner product on Tep(B̊11

∣∣
p
) as discussed earlier. Recall that the kernel of an operator

in Ψm,E
0 (M), Re(E11) ≥ 0, is of the form κP = KP (z, z̃) · γ0(z) ⊗ γ0(z̃), where β∗0KP is

continuous down to the front face with values in distributions conormal to the lifted diagonal

∆ι0. Since ∆ι0 is transversal to B11

∣∣
p
, P determines in a natural way a distribution on B11

∣∣
p

by restriction: one has

Fp(P ) := β∗0KP

∣∣
B11|p

∈ AE10,E01

phg Im+n+1
4 (B11

∣∣
p
, {ep}), (3.2.16)

where E10, E01 correspond to expansions at B10∩B11 and B01∩B11 respectively and the order

of conormality follows Hörmander’s convention, described earlier. By [MM87, Proposition

5.19], for operators with smooth kernel down to the interior of the front face there exists a

short exact sequence

0 ↪→Ψ−∞,E10,E01,1
0 (M)→ Ψ−∞,E10,E01

0 (M)
F∗→ AE10,E01

phg

(
B11

∣∣
∗

)
→ 0, (3.2.17)

where AE10,E01

phg

(
B11

∣∣
∗

)
is a family distributions depending parametrically and smoothly on a

boundary point and an AH metric has been used to identify the kernels of operators with

functions.

The operator on T+
p M given by convolution by the kernel (3.2.16) agrees with the model

operator of P :
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Lemma 3.2.5. Let P ∈ Ψm,E
0 (M) with Re(E11) ≥ 0, where (M, g) is AH. Then for each

p ∈ ∂M and f · γhp0 ∈ C∞c (T+
p M ; Ω1/2) one has Np(P )(f · γhp0 ) = (Fp(P ) ∗ f) · γhp0 where the

convolution is with respect to the Haar measure determined by g.

Proof. Let (u,w) be linear coordinates on TpM
+ with u boundary defining function and let

ϕ : U ′ → U be as above, so that (x, y) = (u,w) ◦ ϕ−1 become coordinates on M near p with

x boundary defining function. By (3.2.15) it follows that for f ∈ C∞c (T+
p M) and r small

suppR∗1/rf ⊂ U ′ and thus supp
(
(ϕ−1)∗R∗1/rf

)
⊂ U , where the coordinates (x, y) are valid.

Hence by (3.2.11) and (3.2.15) we find (upon identifying (x, y) with (u,w))

Np(P )(f · γhp0 )(u,w) = lim
r→0

∫
β∗0K

l
P

(
r
u

s
, rw − W

s
ru, s,W

)
× f

(u
s
, w − W

s
u
)√

det g(0, 0)
|dsdW |

s
·
√

det g(ru, rw)√
det g(0, 0)

γ
hp
0

(3.2.18)

=

∫
β∗0K

l
P (0, 0, s,W )f

(u
s
, w − W

s
u
)√

det g(0, 0)
|dsdW |

s
· γhp0

=

∫
β∗0K

l
P

(
0, 0, (s,W )

)
f
(
(s,W )−1 · (u,w)

)√
det g(0, 0)

|dsdW |
s

· γhp0

=(Fp(P ) ∗ f)(u,w) · γhp0 .

Here
√

det g(0, 0)s−1|dsdW | is the left invariant Haar measure on B̊11

∣∣
p

induced by the metric

hp as described earlier.

Remark 3.2.6. It follows from Lemma 3.2.5 that if χ ∈ C∞c (U) is identically 1 in a neigh-

borhood of p then Np(Pχ) = Np(χP ) = Np(P ).

Given a choice of coordinates near p such that hp = u−2(du2 + |dw|2), (T+
p M,hp) can be

isometrically identified with Hn+1 = {(u,w) ∈ R+ × Rn}, the hyperbolic upper half space,

and the same is true for B̊11

∣∣
p

as already discussed. Using those identifications we can regard

Np(P ) as an operator on Hn+1 and rewrite (3.2.18) as

Np(P )f(u,w) =

∫
β∗0K

l
P

(
0, 0,

u

ũ
,
w − w̃
ũ

)
f(ũ, w̃)

|dũdw̃|
ũn+1

. (3.2.19)
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Note that β∗0K
l
P

(
0, 0, u

ũ
, w−w̃

ũ

)
= β∗0K

r
P

(
0, 0, ũ

u
, w̃−w

u

)
and the former is polyhomogeneous with

index set E10 in u/ũ while the latter is polyhomogeneous with index set E01 in ũ/u. This im-

plies that if P ∈ Ψm,E
0 (M) with Re(E11) ≥ 0, over compact subsets of Hn+1 one has KNp(P ) ∈

AE ′phgIm((Hn+1)2
0; ∆ι0) with E ′ = (E10, E01, {(0, 0)}). Conjugating by the Cayley transform,

Np(P ) can be interpreted as an operator on Bn+1 and one has Np(P ) ∈ Ψm,E10,E01

0 (Bn+1);

thus the model operator also extends to appropriate weighted Sobolev spaces according to

Proposition 3.2.4.

We now prove the following proposition stating that under suitable assumptions the model

operator is a homomorphism. It is stated and proved in [MM87] in the case P ∈ Diffm0 (M).

It is also mentioned in [Alb] and in [EMM91] that the homomorphism property holds, though

without explicit mention of hypotheses that need to be assumed.

Proposition 3.2.7. Let P , P ′ be as in Proposition 3.2.1, with the additional assumptions

Re(E11) ≥ 0, Re(F11) ≥ 0 and Re(E10 + F01) > 0. Then for each p ∈ ∂M one has Np(P ◦

P ′) = Np(P ) ◦Np(P
′).

Remark 3.2.8. The assumptions Re(E11) ≥ 0, Re(F11) ≥ 0 and Re(E10+F01) > 0 guarantee

that P , P ′ and P ◦ P ′ have well defined model operators (see Proposition 3.2.1).

Proof. Without loss of generality we can assume that E11 = F11 = {(0, 0)}: indeed, upon

restricting β∗0KP (resp. β∗0KP ′) at B11

∣∣
p
, any term in the asymptotic expansion of β∗0KP

(resp. β∗0KP ′) at B11

∣∣
p

corresponding to (sj, pj) ∈ E11 (resp. F11) with Re(sj) > 0 does not

contribute to the model operator of P (resp. P ′). By Proposition 3.2.1 and the assumption

Re(E10 + F01) > 0 any such coefficient does not contribute to the model operator of the

composition P ◦ P ′ either.

By [MM87, Proposition 5.19] the claim holds if P ∈ Diffm0 (M) and P ′ ∈ Ψm′,F
0 (M), and

it also follows very similarly if P ′ ∈ Diffm
′

0 (M) and P ∈ Ψm,F
0 (M) (or if both P , P ′ are

differential). Using this fact, we observe that it suffices to show the claim for m, m′ < N0,

where N0 ∈ N0 is sufficiently large that the Schwarz kernels of P and P ′ are continuous

away from the side faces of M2
0 . Indeed, suppose we have done so. Then using (3.2.10) and
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(3.2.9) with N sufficiently large we can decompose P , P ′ and P ◦P ′ into sums of products of

operators for which the homomorphism property holds, to show the proposition for general

m, m′.

So now assume thatm, m′ < −N0 for a large positive integerN0, implying that the kernels

β∗0KP and β∗0KP ′ are continuous away from the side faces. We first show that Np(P (1 −

χ)P ′) = 0, where χ is smooth, supported in a small neighborhood of p ∈M , and identically

1 near p. Let ϕ : U ′ → U be as before, (u, v) linear coordinates on T+
p M with u boundary

defining function and (x, y) = (u, v) ◦ ϕ−1 coordinates near p. As explained earlier, we can

assume that the coordinates are chosen so that det g
∣∣
p

= 1. Also let (˜̃x, ˜̃y) be a copy of the

coordinate system (x, y) on the right factor of M2. Then
(
x, y, t̂ = ˜̃x/x, Ŷ = (˜̃y − y)/x

)
are

a valid coordinate system in M2
0 away from B10. For f ∈ C∞c (T+

p M) and disregarding the

densities for convenience we have, for r > 0 small and u > 0

R∗rϕ
∗P (1− χ)P ′(ϕ−1)∗R∗1/rf(u,w)

=

∫ (∫
KP

(
r(u,w), z̃

)
(1− χ(z̃ ))KP ′

(
z̃ , r(ut̂, w + uŶ )

)
dVg(z̃ )

)
f(ut̂, w + uŶ )

|dt̂dŶ |
t̂n+1

.

(3.2.20)

In (3.2.20) we evaluated the kernel factors KP (z, z̃) and KP ′(z̃, ˜̃z) at z = r(u,w) and ˜̃z =

r(ut̂, w+uŶ ), without writing explicitly the ϕ. The fact that (1−χ) vanishes near p implies

that for small r the innermost integrand in (3.2.20) is supported away from the boundary of

the triple diagonal in M3. Thus if χ̃ ∈ C∞(M) is supported in the zero set of (1− χ) and is

identically 1 near p, we have

χ̃(z)KP (z, z̃)(1− χ(z̃ ))KP ′(z̃, ˜̃z )χ̃( ˜̃z ) ∈ AE10,E01+F10,F01

phg (M3), (3.2.21)

where E10, E01 + F10, F01 correspond to expansions at ∂M × M2, M × ∂M × M and

M2×∂M respectively. By the assumption Re(E01 +F10) > n, (3.2.21) is integrable in z̃, and

for small enough r the innermost integrand in (3.2.20) can be replaced by (3.2.21) evaluated

at z = r(u,w), ˜̃z = r(ut̂, w + uŶ ); the latter has an expansion in r with the exponent of r
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in the leading order term positive, by the assumption Re(E10 + F01) > 0, so the same holds

for the innermost integral, thus (3.2.20) vanishes in the limit as r → 0.

We have established that it suffices to show that Np(PχP
′) = Np(P )Np(P

′). We will

express the action of P , P ′ in coordinates as in (3.2.19). Let (x, y, x̃, ỹ) and (x̃, ỹ, ˜̃x, ˜̃y) be

copies of the same coordinate system near (p, p) ∈ M2 chosen as before. If u is supported

near p in M we have

Pu(x, y) =

∫
β∗0K

l
P

(
x̃, ỹ,

x

x̃
,
y − ỹ
x̃

)
u(x̃, ỹ)

|dx̃dỹ|
x̃n+1

(3.2.22)

P ′u(x̃, ỹ) =

∫
β∗0K

l
P ′

(
˜̃x, ˜̃y,

x̃
˜̃x
,
ỹ − ˜̃y

˜̃x

)
u(˜̃x, ˜̃y)

|d˜̃xd˜̃y|
˜̃xn+1

(3.2.23)

Then with a computation as in (3.2.18) we immediately obtain that for f ∈ C∞c (T+
p M)

Np(P )f(u,w) =

∫
β∗0K

l
P

(
0, 0,

u

x̃
,
w − ỹ
x̃

)
f(x̃, ỹ)

|dx̃dỹ|
x̃n+1

Np(P
′)f(ũ, w̃) =

∫
β∗0K

l
P ′

(
0, 0,

ũ
˜̃x
,
w̃ − ˜̃y

˜̃x

)
f(˜̃x, ˜̃y)

|d˜̃xd˜̃y|
˜̃xn+1

;

We will now compute the model operator of the composition. First write

PχP ′f(x, y)

=

∫
β∗0K

l
P

(
x̃, ỹ,

x

x̃
,
y − ỹ
x̃

)∫
χ(x̃, ỹ)β∗0K

l
P ′

(
˜̃x, ˜̃y,

x̃
˜̃x
,
ỹ − ˜̃y

˜̃x

)
f(˜̃x, ˜̃y)

|d˜̃xd˜̃y|
˜̃xn+1

|dx̃dỹ|
x̃n+1

.

Upon making a change of variables in each integration to rescale, we find that for small r

R∗rϕ
∗PχP ′(ϕ−1)∗R∗1/rf(u,w)

=

∫ ∫
β∗0K

l
P

(
rx̃, rỹ,

u

x̃
,
w − ỹ
x̃

)
χ(rx̃, rỹ)β∗0K

l
P ′

(
r ˜̃x, r ˜̃y,

x̃
˜̃x
,
ỹ − ˜̃y

˜̃x

)
f(˜̃x, ˜̃y)

|d˜̃xd˜̃y|
˜̃xn+1

|dx̃dỹ|
x̃n+1

.

(3.2.24)

Note that the integrand is L1. Indeed, by our assumption on m,m′ both kernels are

continuous away from the side faces of M2
0 and the integration in (˜̃x, ˜̃y) is over a com-

pact subset of the open upper half plane. Moreover, since χ is supported in a small

neighborhood of p, x̃ is bounded in its support and thus one only needs to be careful
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about the behavior of the integrand as x̃ → 0. Since x̃/x is a defining function for B01,

β∗0K
l
P

(
rx̃, rỹ, u

x̃
, w−ỹ

x̃

)
= β∗0K

l
P

(
rx̃, rỹ, u

x̃
, u
x̃
w−ỹ
u

)
has a polyhomogeneous expansion in u/x̃

with index set −E01 as x̃ → 0, On the other hand, β∗0KP ′ has an expansion with in-

dex set F10 in x̃/˜̃x and therefore the integrand in (3.2.24) is integrable by the assumption

Re(E01 + F10) > n. Now by dominated convergence we can take the limit as r → 0 to find

that

Np(PχP
′)(f)(u,w)

=

∫ ∫
β∗0K

l
P

(
0, 0,

u

x̃
,
w − ỹ
x̃

)
β∗0K

l
P ′

(
0, 0,

x̃
˜̃x
,
ỹ − ˜̃y

˜̃x

)
f(˜̃x, ˜̃y)

|d˜̃xd˜̃y|
˜̃xn+1

|dx̃dỹ|
x̃n+1

,

which is the same expression that one finds upon composing (3.2.22) and (3.2.23).

3.3 The Pseudodifferential Property

In this section show that the normal operator Ng is a 0-pseudodifferential operator, namely

that Ng ∈ Ψ−1,n,n
0 (M), and study the distance function induced by g as an intermediate

step. Once the pseudodifferential property of N has been established, we use it to extend I

to larger weighted L2 spaces than those of Section 3.1.

We first state and prove a technical lemma, which is similar to Proposition 19 in [CH16].

Lemma 3.3.1. Let (M̊, g) be a simple AH manifold. The map

Φ : T ∗M̊ →M2
0(

z, ξ
)
7→
(
z, expz

(
ξ#
))

extends smoothly to a map Φ̃ : 0T ∗M →M2
0 , where we are using the canonical identification

of 0T ∗M
∣∣
M̊

=
(

0T ∗M
)◦

and T ∗M̊ . Here # raises an index with respect to the metric g.

Moreover, the differential of Φ̃ at (z, 0) ∈ 0T ∗M
∣∣
∂M

has full rank.

Proof. We will rewrite the map Φ as a composition of maps. Consider the bundle 0T ∗M ×
0T ∗M =: (0T ∗M)2 over M2. Following [CH16], we let ΦT ∗M2

0 := β∗0
(
(0T ∗M)2

)
; it is a bundle
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over M2
0 with bundle projection denoted by Φπ. Define ψ : 0T ∗M → ΦT ∗M2

0 by

ψ(z, ξ) =

(z,−ξ, z, ξ ), if (z, ξ ) ∈ 0T ∗M
∣∣
M̊(

ez,
(
z,−ξ, z, ξ

))
, if (z, ξ ) ∈ 0T ∗M

∣∣
∂M
,

(3.3.1)

where ez denotes the canonical origin in the fiber of the front face over the point (z, z) 5.

Using coordinates (x, y, x̃, ỹ) near a fixed point (p, p) ∈ ∂∆ι ⊂M2 and projective coordinates(
x, y, t = x̃/x, Y = (ỹ − y)/x

)
in M2

0 away from B10, in terms of which ∆ι0 = {t = 1, Y = 0}

and B11 = {x = 0}, one can see that ψ is a smooth map. Indeed, recalling that ΦT ∗M2
0 ⊂

M2
0 × (0T ∗M)2 and suppressing the base point of 0-covectors for (z, ξ) ∈ 0T ∗M

∣∣
M̊

, we can

write in terms of the projective coordinates ψ(z, ξ ) =
(
(x, y, 1, 0), (−ξ,ξ )

)
, which extends

smoothly down to x = 0.

We will next compose ψ with the flow of an appropriately chosen vector field on ΦT ∗M2
0 .

In [CH16], the authors analyze the Hamiltonian vector field X associated to the metric

Lagrangian Lg = |ξ|2g/2 on T ∗M̊ viewed as a vector field on 0T ∗M , under the identification

T ∗M̊ ↔ 0T ∗M
∣∣
M̊

; it turns out that X is smooth on 0T ∗M . Let (x, y) be coordinates near

p such that the metric is written in normal form g =
dx2 + (hx)στdy

σdyτ

x2
as in (3.1.1)

and also let (z, ξ) = (x, y, ζ̃, η̃) be coordinates for 0T ∗M near the fiber over p such that

ξ = ζ̃x−1dx+ η̃αx
−1dyα. Then in terms of those coordinates

X = xζ̃∂x + xhστx η̃τ∂yσ −
(
hστx +

1

2
x∂xh

στ
x

)
η̃ση̃τ∂ζ̃ +

(
ζ̃ η̃σ −

1

2
x∂yσh

τλ
x η̃τ η̃λ

)
∂η̃σ , (3.3.2)

which shows that X is smooth down to ∂ 0T ∗M , and tangent to it. Thus if XR = (0, X)

denotes the Hamiltonian vector field on the right factor of (0T ∗M)2, we can also deduce

that XR extends smoothly to the boundary faces of (0T ∗M)2, meeting them tangentially.

Moreover, as shown in [CH16], XR lifts from the interior of (0T ∗M)2 via β0

∣∣
(M2

0 )◦
to a vector

field on (ΦT ∗M2
0 )◦ (still denoted XR), which extends smoothly to its boundary faces and is

tangent to all of them. More strongly, XR is tangent to the level sets of Lg = 1
2

(
ζ̃ 2 +hστ η̃ση̃τ

)
5Only the the right 0-covector in the definition of (3.3.1) will enter the subsequent arguments; nothing

essential changes if one choses to define, for instance, ψ(z, ξ) = (z, 0, z, ξ) over the interior of 0T ∗M and
accordingly at the boundary.
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on each factor of (0T ∗M)2. Those level sets extend smoothly to the boundary, both in

(0T ∗M)2 and in ΦT ∗M2
0 , resulting in smooth compact manifolds with corners in both cases.

Thus the flow of XR in ΦT ∗M2
0 is complete. Now let

Φ̃ : 0T ∗M →M2
0(

z, ξ
)
7→ Φπ ◦ ϕ̃1 ◦ ψ

(
z, ξ
)
,

where ϕ̃t is the flow of XR. This map is smooth as a composition of smooth maps and it

extends Φ. Moreover, it maps 0 ∈ 0T ∗pM at p ∈ ∂M to ∂∆ι0
∣∣
(p,p)

= ep, since from (3.3.2) it

follows that XR vanishes at ψ(p, 0) = (ep, (0, 0)) ∈ ΦT ∗M2
0 .

It remains to show that dΦ̃ has full rank in a sufficiently small neighborhood of (p, 0) ∈
0T ∗M

∣∣
∂M

. In 0T ∗M
∣∣
M̊

we write Φ̃(z, ξ) = expz(ξ
#) and in coordinates (x, y, t, Y ) as before

(x, y,t, Y ) = Φ̃(x, y, ζ̃, η̃ )

=

(
x, y,

x̃ ◦
(

exp(x,y)(ζ̃x∂x + η̃σh
στx∂yτ )

)
x

,
ỹ ◦
(

exp(x,y)(ζ̃x∂x + η̃σh
στx∂yτ )

)
− y

x

)
.

(3.3.3)

For x > 0 we can compute its Jacobian matrix in these coordinates at the 0-covector, using

the fact that the differential of the exponential map at 0 is the identity. We find

dΦ̃(x,y,0,0) =

 Id 0

∗ g−1
(x,y)

 , (3.3.4)

where g−1
(x,y) is the matrix of the dual metric corresponding to g = x2g in (x, y) coordinates

for x > 0. Since we have already established that Φ̃ is smooth in a neighborhood of ep,

(3.3.4) also holds down to x = 0 and this completes the proof.

The behavior of the distance function on AH manifolds away from the diagonal has been

studied by various authors, see for instance [SW16], [CH16] and [GGS+], and also [MSV14]

for small perturbations of hyperbolic metric. As Proposition 3.3.2 below indicates, provided

(M̊, g) is simple, the lift of the distance function to M2
0 is smooth away from ∆ι0 and the
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side faces, however our analysis of Ng will also require smoothness of the lift of its square in

a neighborhood of ∆ι0, all the way to the front face. We are not aware of this fact explicitly

stated in the literature, so we provide a proof.

Proposition 3.3.2. Let (M̊, g) be a simple AH manifold and let ρ : M̊2 → R be the geodesic

distance function. There exists α ∈ C∞(M2
0\∆ι0) such that

β∗0ρ = α− log(x10)− log(x01),

where x10 and x01 are defining functions for the left and right face of M2
0 respectively. More-

over, β∗0ρ
2 extends to a smooth function on M2

0\(B10 ∪B01).

Proof. The first statement follows from work in [SW16], [CH16] and [GGS+] (see [GGS+, Re-

mark 7]). We show the second statement. Assume without loss of generality that x10, x01 ≡ 1

in a neighborhood of ∆ι0. Since ρ2 is smooth near ∆ι∩ M̊2 and thus β∗0ρ
2 extends to a func-

tion in C∞(M2
0\(∂∆ι0 ∪ B10 ∪ B01)), it is enough to show that β∗0ρ

2 extends to be smooth

in a neighborhood of ∂∆ι0. By the Inverse Function Theorem, Lemma 3.3.1 implies that Φ̃

restricted to a neighborhood of a point (p, 0) ∈ 0T ∗M
∣∣
∂M

is invertible. The inverse, defined

in a neighborhood U ⊂M2
0 of ∂∆ι0

∣∣
(p,p)

, is smooth all the way to the front face. In U∩(M2
0 )◦

β∗0ρ
2(z, z̃) = | exp−1

z (z̃ )|2g =

∣∣∣∣(Φ̃−1(z, z̃)
)#
∣∣∣∣2
g

=
∣∣∣Φ̃−1(z, z̃)

∣∣∣2
g−1

(3.3.5)

using the identification (M2
0 )◦ ↔ M̊2. Since g induces a non-degenerate quadratic form on

the fibers of 0T ∗M , smooth all the way to the boundary, (3.3.5) extends smoothly to ∂∆ι0

and this finishes the proof.

The proof of the following lemma is essentially contained in [SU04]. Recall that by

simplicity of (M̊, g) the exponential map at any point is a diffeomorphism onto M̊ and thus

it can be used to define a global coordinate system on M̊ .

Lemma 3.3.3. Let M be a simple AH manifold and let z = (z0, . . . , zn) and z̃ = (z̃ 0, . . . , z̃ n)

two copies of the same global coordinate system in each of the two factors of M̊2. The kernel
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of Ng, viewed as a section of Ω
1/2
0 (M2), is given by KNg(z, z̃) · γ0(z)⊗ γ0(z̃ ), where

KNg(z, z̃) =
2| det(∂zz̃ρ

2/2)|
ρn(z, z̃)

√
det g(z)

√
det g(z̃)

. (3.3.6)

Proof. Let f ∈ Ċ∞(M). We compute Ngf , viewed as a function:

Ngf(z) =

∫
S∗zM̊

∫ ∞
−∞

f
(

expz(tξ
#)
)
dtdµg(ξ) = 2

∫
S∗zM̊

∫ ∞
0

f
(

expz(tξ
#)
)
dtdµg(ξ)

= 2

∫
T ∗z M̊

f
(

expz(ξ
#)
)
|ξ|−ng

√
det g−1(z)dξ = 2

∫
M̊

f(z̃)| det
(
dz̃ exp−1

z (z̃)[
)
|

| exp−1
z (z̃ )|ng

√
det g(z)

dz̃

where the third equality follows by polar coordinates in the inner product space (T ∗z M̊, g−1(z)).

Now | exp−1
z (z̃)|g = ρ(z, z̃ ) and by the Gauss Lemma exp−1

z (z̃)[ = −ρdzρ, so

Ngf(z) =

∫
M̊

2| det(∂zz̃ρ
2/2)|f(z̃ )

ρn(z, z̃ )
√

det g(z)
√

det g(z̃ )
dVg(z̃ ).

Multiplying both sides by the half density γ0(z) and viewing Ng as an operator acting on

the half density f · γ0(z̃ ) we have the claim.

We now prove the following key proposition:

Proposition 3.3.4. Let (M̊n+1, g) be a simple AH manifold. Then Ng ∈ Ψ−1,n,n
0 (M). More-

over, it is elliptic.

Proof. We examine the Schwartz kernel of Ng on M̊2 and on the stretched product M2
0 . As

noted in [SU04], the form of the kernel in Lemma 3.3.3 implies that in open subsets of M̊2

the kernel of Ng agrees with the kernel of a pseudodifferential operator of order −1 with

principal symbol Cn|ξ|−1
g . Since smooth sections of

(
Ω

1/2
0 (M2)

)
lift to smooth sections of

Ω
1/2
0 (M2

0 ) it suffices to study the behavior of KNg(z, z̃ ) in (3.3.6) and its pullback to M2
0

as z, z̃ → ∂M , both away from, and near the diagonal. Throughout the proof, z = (x, y),

z̃ = (x̃, ỹ) are representations in terms of two copies of the same coordinate system in each

factor of M̊2 such that x, x̃ are boundary defining functions.

First note that | det(∂zz̃ρ
2/2)| = | det

(
dz̃ exp−1

z (z̃)[
)
| by the proof of Lemma 3.3.3, so by

simplicity det(∂zz̃ρ
2/2) 6= 0 on M̊2 and the absolute value can be ignored in the process of
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examining the smoothness properties of KNg and β∗0KNg . Moreover, we observe a simplifi-

cation of (3.3.6) away from the diagonal. We have that ∂2
zz̃(ρ

2/2) = ρ∂2
zz̃ρ+ ∂zρ⊗ ∂z̃ρ. Since

for H ∈ Rd×d and u, v ∈ Rd one has det(H + u⊗ v) = det(H) + (adj(H)u) · v by the matrix

determinant lemma, where adj(H) is the adjugate matrix of H and · denotes the Euclidean

dot product, we have

det
(
∂2
zz̃(ρ

2/2)
)

= ρn+1 det(∂2
zz̃ρ) + ρn

(
adj(∂2

zz̃ρ)∂zρ
)
· ∂z̃ρ.

Observe that the first term vanishes away from the diagonal. Indeed, if z 6= z̃ the Gauss

Lemma yields |dzρ(z, z̃)|g = 1, thus the rank of the map dzρ(z, ·) : M̊\{z} → S∗zM̊ is at most

n. Therefore, det(∂2
z̃zρ) = 0 and thus away from the diagonal we have

KNg(z, z̃) =
2| (adj(∂2

zz̃ρ)∂zρ) · ∂z̃ρ|√
det g(z)

√
det g(z̃)

. (3.3.7)

We first examine KNg(z, z̃) on M̊2 away from the diagonal when z → ∂M or z̃ → ∂M .

By Proposition 3.3.2, if , for z, z̃ away from the diagonal we have

ρ(z, z̃) = α(x, y, x̃, ỹ)− log(x)− log(x̃),

where α ∈ C∞ (M2\∆ι). Since ∂2
zz̃ρ = ∂2

zz̃ α, adj(∂2
zz̃ρ) ∈ C∞(M2\∆ι). Moreover,

√
det g(z) =

x−n−1
√

det g(z) and
√

det g(z̃) = x̃ −n−1
√

det g(z̃) with det g(z), det g(z̃) ∈ C∞(M) and

non-vanishing. Finally, ∂zρ ∈ x−1C∞(M2 \∆ι) and similarly for ∂z̃ρ, thus

KNg(z, z̃) ∈ xnx̃ nC∞
(
M2\∆ι

)
.

Now we have to examine the pullback β∗0KNg of KNg to the stretched product M2
0 . The

coordinate systems (x, y) and (x̃, ỹ) we used before induce coordinate systems in various

neighborhoods of M2
0 . First let U be a neighborhood of B11\∂∆ι0, disjoint from the diagonal

and B10. On U we use projective coordinates

x, y, t =
x̃

x
, Y =

ỹ − y
x

, (3.3.8)
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in terms of which t is a defining function for B01 and x is a defining function for B11. By

Proposition 3.3.2, in U we have β∗0ρ = α̃− log(t), α̃ ∈ C∞(U). Thus the chain rule yields

β∗0(∂xρ, ∂yρ) =
(
∂xα̃− tx−1

(
∂tα̃− t−1

)
− x−1Y σ∂Y σ α̃, ∂yα̃− x−1∂Y α̃

)
= x−1ϕ,

β∗0(∂x̃ρ, ∂ỹρ) =
(
x−1

(
∂tα̃− t−1

)
, x−1∂Y α̃

)
= t−1x−1ϕ′,

where ϕ, ϕ′ have components in C∞(U), and further

β∗0∂
2
xx̃ρ =x−2

(
−∂tα̃ + x∂2

xtα̃− t∂2
ttα̃− Y λ∂2

Y λtα̃
)

= x−2ψ00,

β∗0∂
2
yσx̃ρ =x−2

(
x∂2

yσtα̃− ∂2
Y σtα̃

)
= x−2ψσ0,

β∗0∂
2
yσ ỹ τρ =x−2

(
x∂2

yσY τ α̃− ∂2
Y σY τ α̃

)
= x−2ψστ ,

β∗0∂
2
xỹ τρ =x−2

(
−∂Y τ α̃ + x∂2

xY τ α̃− t∂2
tY τ α̃− Y λ∂2

Y λY τ α̃
)

= x−2ψ0τ , (3.3.9)

where ψij ∈ C∞(U). Note that ∂x, ∂y have different meanings in the left and right hand sides

of the above equations. Since for H ∈ Rd×d and λ ∈ R we have adj(λH) = λd−1 adj(H) we

find β∗0(adj(∂2
zz̃ρ)) ∈ x−2nC∞(U ;R(n+1)×(n+1)). On the other hand, β∗0

√
det g(z) = x−n−1g̃1

and β∗0
√

det g(z̃ ) = t−n−1x−n−1g̃2 with g̃j ∈ C∞(U) and non-vanishing for j = 1, 2. By

(3.3.7) we conclude that β∗0KNg ∈ tnC∞(U). This shows that β∗0KNg has the claimed behavior

away from B10 and ∆ι0; moreover, the fact that (3.3.6) is symmetric implies that this is also

true away from B01 and ∆ι0.

We now examine β∗0KNg in a neighborhood W of a point in B10 ∩ B11 ∩ B01 away from

∆ι0. Near such a point we have |y− ỹ| 6= 0, hence at least one of the functions yσ − ỹ σ does

not vanish. We may assume without loss of generality that yn− ỹ n > 0 and use coordinates

r = yn − ỹ n, θ =
x

r
, θ̃ =

x̃

r
, Ŷ λ̂ =

yλ̂ − ỹ λ̂

r
, y, (3.3.10)

where λ̂ = 1, . . . , n− 1. A computation using the chain rule yields

β∗0∂x = r−1∂θ, β∗0∂yτ = r−1
(
(r∂r − θ̃∂ θ̃)δ

n
τ + Vτ

)
, Vτ ∈ Vb(M2

0 ), d θ̃(Vτ ) = dr(Vτ ) = 0

β∗0∂ x̃ = r−1∂ θ̃, β∗0∂ỹτ = r−1
(
− (r∂r − θ∂θ)δnτ + Ṽτ

)
, Ṽτ ∈ Vb(M2

0 ), dθ(Ṽτ ) = dr(Ṽτ ) = 0.
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In terms of (3.3.10) β∗0ρ = ã− log(θ)− log(θ̃), ã ∈ C∞(W), so

β∗0(∂xρ, ∂yρ) = (−(rθ)−1, 0) + r−1ϕ̆, β∗0(∂ x̃ρ, ∂ ỹρ) = (−(rθ̃ )−1, 0) + r−1ϕ̆ ′, (3.3.11)

where ϕ̆, ϕ̆ ′ ∈ C∞(W ;Rn+1). Moreover, since (r∂r−θ∂θ)((rθ)−1) = 0 and (r∂r−θ̃∂θ̃)((rθ̃)−1) =

0 we find that β∗0∂zz̃ ρ ∈ r−2C∞(W ;R(n+1)×(n+1)). Thus β∗0 adj(∂2
zz̃ρ) ∈ r−2nC∞(W ;R(n+1)×(n+1)).

Noting that β∗0
√

det g(z) = r−n−1θ−n−1ğ1 and β∗0
√

det g(z̃) = r−n−1θ̃ −n−1ğ2 with ğj ∈

C∞(W) and non-vanishing, we use (3.3.7) again and (3.3.11) to find that β∗0KNg ∈ θnθ̃ nC∞(W).

We conclude that β∗0KNg ∈ C∞(M2
0 \∆ι0) and vanishes to order n on B10 and B01.

To finish the proof it remains to examine the behavior of the pullback of (3.3.6) near

∂∆ι0. First note that β∗0ρ
∣∣
(M2

0 )◦
vanishes exactly on ∆ι0 ∩ (M2

0 )◦. By Proposition 3.3.2, β∗0ρ
2

is smooth in a neighborhood of ∆ι, hence it also vanishes on ∂∆ι0. Finally, by Proposition

24 in [CH16], for every p ∈ ∂M , β∗0ρ restricts to a function on B11

∣∣
p
, which for each q ∈ B11

∣∣
p

agrees with the distance between ep and q induced by the hyperbolic metric hrp on B11

∣∣
p
.

Therefore, β∗0ρ does not vanish on the front face at any point other than ep. We conclude

that β∗0ρ
2 ∈ C∞

(
M2

0 \ (B10 ∪B01)
)

and vanishes exactly on ∆ι0.

We now use a variant of the coordinates given by (3.3.8): near ∆ι0 and away from B10

we use (z, Z) = (z, (z̃ − z)/x) = (x, y, t− 1, Y ). Note that in terms of those coordinates x is

again a defining function for B11 and ∆ι0 is expressed as {Z = 0}. Observe that on (M2
0 )◦

one has

β∗0ρ
2
∣∣
Z=0

= β∗0
(
ρ2
∣∣
{z=z̃}

)
= 0, ∂Zj(β

∗
0ρ

2)
∣∣
Z=0

= xβ∗0

(
∂z̃ j(ρ

2)
∣∣
{z=z̃}

)
= 0,

∂ZiZj(β
∗
0ρ

2)
∣∣
Z=0

= x2β∗0

(
∂z̃ iz̃ j(ρ

2)
∣∣
{z=z̃}

)
= 2x2gij(z) = 2gij(z). (3.3.12)

By smoothness of β∗0ρ
2 near ∆ι0 we conclude that (3.3.12) holds all the way to the front face.

Thus by Taylor’s Theorem, viewing z as parameters, we write

β∗0ρ
2 =gij(z)ZiZj + bklm(z, Z)ZkZ lZm

where bklm(z, Z) is smooth.
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We will now show that the expression K̂(z, z̃) := 2|det(∂zz̃ρ
2/2)|√

det g(z)
√

det g(z̃)
pulls back to a non-

vanishing smooth function in a neighborhood of the lifted diagonal all the way to the front

face. First one can perform computations very analogous to (3.3.9), with ρ replaced by ρ2, to

conclude that x2β∗0∂
2
zz̃(ρ

2/2) is a smooth matrix valued function in a neighborhood of ∂∆ι0

(note here that its behavior near t = 0 is irrelevant for this computation). Also, for z ∈ M̊

one has
∣∣ det(∂zz̃ρ

2/2)|z=z̃
∣∣ = | det g(z)|. Therefore, since x2n+2β∗0

(√
det g(z)

√
det g(z̃ )

)
is

smooth and non-vanishing near ∆ι0, β∗0K̂ is smooth in a neighborhood of the lifted diagonal.

Moreover, K̂
∣∣
∆ι∩M̊2 ≡ 2 implies that β∗0K̂

∣∣
∆ι0
≡ 2.

Now the fact that β∗0KNg ∈ I−1(M2
0 ,∆ι0) follows from a standard argument, which we

will outline. Consider ϕ ∈ C∞c (Rn+1) with ϕ ≡ 1 near 0 and write

Kϕ(z, Z) := KNg(z, z − xZ)ϕ(Z) =
a(z, Z)ϕ(Z)

(gij(z)ZiZj + bklm(z, Z)ZkZ lZm)n/2
, (3.3.13)

where a is smooth with a(z, 0) = 2. Now Kϕ is smooth in z, Z away from Z = 0 down

to x = 0 (so the existence of this boundary x = 0 can be ignored). Moreover, Kϕ is

compactly supported in Z and integrable in Z. Writing r = |Z|g and Ẑ = r−1Z we have

Kϕ(z, Z) = r−nã(z, r, Ẑ), where ã is C∞ in its entries, hence by Taylor’s theorem there exists

an expansion

Kϕ(z, Z) ∼
∑
`≥0

ã`(z, Ẑ)|Z|−n+`
g , ã` ∈ C∞, ã0 = 2. (3.3.14)

This is exactly the setup of Proposition 2.8, Chapter 7 in [Tay11], which implies that

Kϕ(z, Z) =
∫
eiZ·ξ̃p(z, ξ̃ )dξ̃, where p(z, ξ̃) ∈ S−1

cl (Rn+1 × Rn+1), i.e. p(z, ξ̃) is actually a

classical symbol of order −1; this means by definition that p(z, ξ̃) admits an asymptotic

expansion of the form

p(z, ξ) ∼
∑
j≥0

p−1−j(z, ξ̃) (3.3.15)

for large ξ̃ ∈ Rn+1, where each pm(z, ξ̃) is homogeneous in ξ̃ of degree m. Therefore, β∗0K ∈

I−1(M2
0 ,∆ι0) (locally identifying a subset of Rn+1×Rn+1 with the bundle N∗∆ι0 ' 0T ∗M).

To show ellipticity we need to show that the principal symbol, given for large ξ̃ ∈ Rn+1

by p−1(z, ξ̃) in (3.3.15), is invertible. The full symbol p is given by FZ(Kϕ), but the principal
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symbol can be computed by taking the Fourier transform of the leading order singularity of

Kϕ at Z = 0; the less singular terms contribute to the symbol terms vanishing at least as

fast as |ξ̃|−2
g as |ξ̃|g → ∞, since the symbol is classical. Now one has FZ(|Z|−ng ) = Cn|ξ̃|−1

g

for Cn > 0 in the sense of tempered distributions, hence the principal symbol is σ−1
0 (Ng) =

Cn|ξ̃|−1
g for large ξ̃ ∈ Rn+1. Using the identification of N∗∆ι0 with 0T ∗M , and the fact that

the latter is trivialized by {dzj/x} near ∂M we can write invariantly σ−1
0 (Ng)(z, ξ) = Cn|ξ|−1

g ,

(z, ξ) ∈ 0T ∗M ; this agrees with the principal symbol computed in [SU04]. Note that for |ξ|g
bounded the principal symbol is smooth, since (3.3.13) is compactly supported in Z; the

singularity at ξ = 0 is an artifact of computing the Fourier transform of the non-compactly

supported leading order term in (3.3.14). In fact, for bounded |ξ|g the principal symbol can

be freely modified as long as it stays smooth; any such smooth modification will yield the

same operator modulo Ψ−∞0 (M). Due to this fact and since g defines a smooth and non-

degenerate quadratic form in the fibers of 0T ∗M , σ−1
0 (Ng) is invertible on 0T ∗M . We have

thus shown that Ng ∈ Ψ−1,n,n
0 (M) and is elliptic, completing the proof.

By Propositions 3.3.4 and 3.2.4 it follows immediately that for s ≥ 0

Ng : xδHs
0(M ; Ω

1/2
0 )→ xδ

′
Hs+1

0 (M ; Ω
1/2
0 )

is bounded if δ > −n/2, δ′ < n/2 and δ′ ≤ δ. We can now prove a continuity property for

the X-ray transform showing that one can extend it to larger weighted L2 spaces than the

ones that appeared in Section 3.1:

Corollary 3.3.5. Let (M̊n+1, g) be a simple AH manifold. If δ′ < δ, δ′ < 0 and δ > −n/2

the X-ray transform is bounded:

I : xδL2(M ; dVg)→ 〈η〉−δ
′

h L2(∂−S
∗M,dλ∂).

Proof. We will show that for δ, δ′ as in the statement there exists a constant C such that

for any f ∈ C∞c (M̊) one has

‖If‖xδ′L2(SM̊ ;dλ) ≤ C‖f‖xδL2(M ;dVg). (3.3.16)
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Since for f ∈ C∞c (M̊) one has If ∈ C∞
X

(S∗M) ∩ xδ′L2(S∗M̊ ; dλ) as explained in the proof

of Lemma 3.1.1, the latter applies for If to show that if (3.3.16) is known then one has

‖If‖〈η〉−δ′h L2(∂−S∗M,dλ∂)
≤ C‖f‖xδL2(M ;dVg), yielding the result by density.

First let 0 < ε < min{δ + n/2, δ − δ′} and note that for each fixed ε the expression

I(x2ε)(z, ξ) =
∫
R x

2ε ◦ ϕt(ξ)dt is uniformly bounded on S∗M̊ , by the proof of Lemma 3.1.1.

Now for f ∈ C∞c (M̊) apply Cauchy-Schwarz to find

‖If‖2
xδ′L2(SM̊ ;dλ)

=

∫
S∗M̊

x−2δ′ |If(z, ξ)|2dλ

=

∫
S∗M̊

x−2δ′
∣∣∣ ∫

R
f(ϕt(z, ξ))dt

∣∣∣2dλ
≤
∫
S∗M̊

x−2δ′
∫
R
x2ε ◦ ϕt(z, ξ)dt

∫
R
|(x−εf)(ϕt(z, ξ))|2dt dλ

≤C
∫
S∗M̊

x−2δ′
∫
R
|(x−εf)(ϕt(z, ξ))|2dt dλ

=C

∫
M̊

x−2δ′
∫
S∗zM̊

I
(
x−2ε|f |2

)
dµg dVg(z)

=C‖Ng(x−2ε|f |2)‖x2δ′L1(M ;dVg).

Now if δ′′ := δ − ε the choice of ε, δ and δ′ imply that 2δ′ < 0, 2δ′′ > −n and 2δ′ ≤ 2δ′′. On

the other hand, an argument similar to the one of Proposition 3.2.4, though simpler (also see

Appendix 1 in [He19]), shows that if P ∈ Ψ−1,E
0 (M) with Re(E10) > n + σ′, Re(E01) > −σ

and σ′ − σ ≤ Re(E11) then P : xσL1(M ; dVg) → xσ
′
L1(M ; dVg) is bounded. Hence the fact

that Ng ∈ Ψ−1,n,n
0 (M) implies that

‖Ng(x−2ε|f |2)‖x2δ′L1(M ;dVg) ≤ C‖x−2ε|f |2‖x2δ′′L1(M ;dVg) = C‖f‖2
xδL2(M ;dVg)

and this finishes the proof.

Remark 3.3.6. By Corollary 3.3.5 and (3.1.5) one also has that I∗ : 〈η〉δ′hL2(∂−S
∗M,dλ∂)→

x−δL2(M ; dVg) is bounded for δ′ < δ, δ′ < 0 and δ > −n/2.
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3.4 The Model Operator

In this section we show that the model operator of Ng at a point p ∈ ∂M can be identified

with the normal operator Nh on the Poincaré hyperbolic ball (Bn+1, h). This operator was

studied in [BC91] and explicit inversion formulas was computed for it using the spherical

Fourier transform; using those formulas we will show that its inverse lies in Ψ1,n+1,n+1
0 (Bn+1).

In what follows we always assume that a choice of coordinates has been made with respect

to a point of interest p ∈ ∂M , such that the hyperbolic metric hp induced by g on T+
p M (see

Section 3.2) takes the form hp = u−2(du2 + |dw|2) with respect to induced linear coordinates

(u,w) on T+
p M .

The following is an analog of Proposition 2.17 in [MM87], which shows that for each

p ∈ ∂M the model operator of the Laplacian corresponding to an AH metric g on M̊ is the

hyperbolic Laplacian on (T+
p M,hp):

Proposition 3.4.1. For any p ∈ ∂M the model operator Np(Ng) on T+
p M is given by

Nhp, the normal operator corresponding to the X-ray transform on T+
p M endowed with the

hyperbolic metric hp.

Proof. As already discussed in detail in Section 3.2, for each p ∈ ∂M the hyperbolic metric hp

on T+
p M induces the metrics hlp and hrp on B̊11

∣∣
p
, which are by construction isometric to each

other. We claim that it suffices to show that for q ∈ B̊11

∣∣
p
, Fp(Ng)(q) = β∗0KNg

∣∣
B̊11|p

(q) =

KNhrp (ep, q) = KN
hlp

(ep, q) for the hyperbolic normal operators Nhlp , Nhlp . Indeed, as we will

discuss in more detail in the proof of Proposition 3.4.2 below, for the normal operator on

hyperbolic space one has that KNh(q, q′) is a function of the hyperbolic distance function

ρh(q, q
′). Recall that we can always arrange that in terms of coordinates (x̃, ỹ, s,W ) and

(x, y, t, Y ) described earlier we have hlp = s−2(ds 2 + |dW |2) and hrp = t−2(dt + |dY |2) re-

spectively. Using the explicit formula for the hyperbolic distance function on the half space

model we can see that ρhlp
(
(1, 0), (s,W )

)
= ρhlp

(
(1, 0), (x/x̃, (y − ỹ)/x̃)

)
= ρhlp

(
(x, y), (x̃, ỹ)

)
and analogously for hrp. Using this fact and computation similar to the one in Lemma 3.2.5
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we find with a change of variables that for f ∈ C∞c (T+
p M) we have

(KN
hlp

(ep, ·) ∗ f)(v) =

∫
KNhp (v, ṽ)f(ṽ)dVhp(ṽ),

which implies the statement of the proposition.

It is more convenient given the setup of Lemma 3.3.1 to show that Fp(Ng)(q) = KNhrp (ep, q).

The fact that KNhrp (ep, q) = KN
hlp

(ep, q) will then follow by noting that ρhlp(ep, q) = ρhrp(ep, q)

and KNh only depends on ρh for a hyperbolic metric h, as already mentioned. We use copies

z = (x, y), z̃ = (x̃, ỹ) of the same coordinate system near p ∈ ∂M such that in terms of

coordinates Z = (t, Y ) on B̊11

∣∣
p
, hrp = t−2(dt2 + |dY |2). By the proof of Lemma 3.3.3, we

can rewrite the function KNg in (3.3.6) as

KNg(z, z̃) =
2
√

det g(z)
∣∣ det ∂z̃(exp−1

z (z̃ ))
∣∣

ρn(z, z̃ )
√

det g(z̃ )
, (3.4.1)

where the matrix ∂z̃(exp−1
z (z̃)) is computed with exp−1

z (z̃) written in terms of coordinates on

TzM determined by the vectors ∂z0 , . . . , ∂zn . Recall the map Φ(z, ξ) =
(
z, expz

(
ξ#
))

= (z, π◦

ϕ1(z, ξ)) and its extension Φ̃(z, ξ) = πΦ◦ϕ̃1◦ψ(z, ξ ) from Lemma 3.3.1. If u∂x+wτ∂yτ ∈ TM◦

denotes a generic vector (so v = (u,wα) are induced fiber coordinates) we can see that (3.3.3)

implies that on M̊2

d(z,ξ)Φ̃ =

Id 0

∗ dv (z̃ ◦ expz(v))
∣∣
v=ξ#g

−1(z)

 , (z, ξ) ∈ (0T ∗M)◦.

Thus on (M2
0 )◦

β∗0 det(dz̃ exp−1
z (z̃)) = β∗0 det(dv z̃ ◦ expz

∣∣
v=(Φ−1(z,z̃))#)−1 = det

(
dv z̃ ◦ expz

∣∣
v=(Φ̃−1)#

)−1

=(det g(z))−1
(

det d(z,ξ)Φ̃
)−1 ◦ Φ̃−1 = (det g(z))−1

(
det dξ(Z ◦ Φ̃)

)−1 ◦ Φ̃−1.

Now 0T ∗M can be identified with N∗∆ι0 and the fiber of the latter over ep with T ∗epB̊11

∣∣
p
,

hence 0T ∗pM ' T ∗ep(B̊11

∣∣
p
). Using this identification, Φ̃

∣∣
0T ∗pM

= Φhrp : T ∗epB̊11

∣∣
p
→ B̊11

∣∣
p
,

(ep, ξ) 7→ π◦ ϕ̃hrp
1 (ep, ξ), where ϕ̃

hrp
t is the flow of the Hamiltonian Xhrp generated on T ∗(B̊11

∣∣
p
)

by the Lagrangian Lhrp = t2(τ 2+Υ2). This follows from the proof of Proposition 23 in [CH16]:
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the lift of the right Hamiltonian XR to ΦT ∗M2
0 (which generates the flow ϕ̃t) is tangent to

B̊11

∣∣
p

and, on its flowout from N∗∆ι0∩{Lg = const.}, its restriction to B̊11

∣∣
p

can be identified

with Xhrp viewed as a vector field on 0T ∗B11

∣∣
p
.

Restricting to B̊11

∣∣
p

we obtain, using that det(g(p)) = 1 with our normalization,

β∗0 det(dz̃ exp−1
z (z̃))

∣∣
B11

∣∣
p

=
(

det dξ (Z ◦ Φhrp)
)−1 ◦ Φ−1

hrp
= det

(
dZ ẽxp−1

ep (Z)
)
, (3.4.2)

where in (3.4.2) ξ denote fiber variables on T ∗epB̊11

∣∣
p

and ẽxp is the hrp-exponential map. Now

by Proposition 24 in [CH16] β∗0ρ restricts to the front face as the hrp-distance between (1, 0)

and Z = (t, Y ). Moreover,

β∗0

√
det g(z)√
det g(z̃)

=
x−n−1

√
det g(x, y)

(tx)−n−1
√

det g(tx, y + xY )
⇒ β∗0

√
det g(z)√
det g(z̃)

=
1

t−n−1
at p.

Combining the restrictions of the various factors of (3.4.1) completes the proof.

As mentioned in Section 3.2, for each p ∈ ∂M the model operator Nhp can be equivalently

realized as an operator acting on C∞c (Bn+1), where (Bn+1, h) is the Poincaré ball with metric

h = 4|dz|2
(1−|z|2)2 ), upon making a choice of coordinates that identifies (T+

p M,hp) with (Hn+1, h)

and conjugating by the Cayley transform. For the next proof we write B instead of Bn+1

(i.e. without a superscript for the dimension). The following proposition is essentially an

immediate consequence of the results in [BC91]:

Proposition 3.4.2. For any p ∈ ∂M the model operator Np(Ng) can be identified with the

operator Nh : C∞c (B; Ω
1/2
0 )→ C−∞(B; Ω

1/2
0 ) on (Bn+1, h), which for δ ∈ (−n/2, n/2) extends

continuously to an operator Nh : xδL2(B; Ω
1/2
0 )→ xδH1

0 (B; Ω
1/2
0 ). The operator Nh has a two

sided inverse N−1
h ∈ Ψ1,n+1,n+1

0

(
B
)

such that N−1
h Nh = NhN−1

h = Id on xδL2(B; Ω
1/2
0 ) for

δ ∈ (−n/2, n/2).

Proof. For each p ∈ ∂M , Np(Ng) = Nhp on (T+
p M,hp) by Proposition 3.4.1, and Nhp can be

identified with Nh on (B, h) as explained before. Thus by Proposition 3.3.4 Nh ∈ Ψ−1,n,n
0 (B)

and the extension statement follows from Proposition 3.2.4. It was observed in [BC91] that
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Nh can be expressed as

Nhf(z) =

∫
B
R
(
ρh(z, z̃ )

)
f(z̃ )dVh(z̃ ), f ∈ C∞c (B), (3.4.3)

where ρh is the geodesic distance function with respect to the hyperbolic metric and

R(r) = π−n/2
Γ(n+1

2
)

Γ(1
2
)

sinh−n(r).

Note that B is a homogeneous space on which G = O+(1, n + 1) acts by isometries, thus it

can be identified with the quotient G/Ho, where Ho
∼= O(n+ 1) is the isotropy group of the

origin o ∈ B. Hence (3.4.3) can be interpreted as convolution by a locally integrable radial

(Ho-invariant) function: for f ∈ C∞c (B)

Nhf(gHo) =R ∗ f(gHo) =

∫
B
R(g̃−1gHo)f(g̃Ho)dVh(g̃Ho), z = gHo, z̃ = g̃Ho,

where above and in what follows by abuse of notation we identify radial functions and

distributions on B with ones on [0,∞), writing for instance R(z) = R(ρh(z, o)) for z ∈ B.

An exact left inverse for Nh is computed in [BC91] (Theorems 4.2, 4.3, 4.4): if ∆ denotes

the hyperbolic Laplacian with principal symbol −|ξ|2h, one has

Cnp(∆)Sn Nh = Id on C∞c (B).

Here Cn is an explicit constant, p(t) = −(t + n − 1) and Sn is given by convolution by the

locally integrable radial kernel

Sn(r) =

coth(r)− 1, n = 1

sinh−n(r) cosh(r), n ≥ 2

, (3.4.4)

that is,

Snf(z) = Sn ∗ f(z) =

∫
B
Sn
(
ρh(z, z̃ )

)
f(z̃ )dVh(z̃ ), f ∈ C∞c (B).

The fact that Cnp(∆)Sn is also a right inverse for Nh follows by tracing through the

proofs of Theorems 4.2-4.5 in [BC91]. They use the spherical Fourier transform of a radial
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distribution, given by f̂(λ) =
∫
B f(z̃ )φ−λ(z̃ )dVh(z̃ ) for λ ∈ R, where φλ is the radial eigen-

function of ∆ with eigenvalue −n2/4 − λ2 that satisfies φλ(o) = 1. The spherical Fourier

transform is well defined pointwise whenever f(z̃)φ−λ(z̃) is integrable; the reason why the

formula corresponding to n = 1 in (3.4.4) differs from the one corresponding to n ≥ 2 is ex-

actly to ensure that Ŝ1 is well defined. Their strategy is to show that (Cnp(∆)Sn ∗ R)̂ = δ̂,

where δ is the delta distribution at the origin. Thus the claim reduces to showing that

(R ∗ Cnp(∆)Sn)̂ = δ̂. This in turn follows from the fact that for radial distributions U ,

V one has Û ∗ V(λ) = Û(λ)V̂(λ), and also p̂(∆)U(λ) = −p(−n2/4 − λ2)Û(λ), provided the

expressions make sense.

Now let ϕ(x) ∈ C∞c ([0,∞)) be identically 1 on [0, 1] and identically 0 on [0, 2]c and let

Sn;1f(z) =

∫
B
ϕ(ρh(z, z̃ ))Sn

(
ρh(z, z̃ )

)
f(z̃ )dVh(z̃ )

and Sn;2f(x) =

∫
B

(
1− ϕ(ρh(x, z̃ ))

)
Sn
(
ρh(z, z̃ )

)
f(z̃ )dVh(z̃ ) for f ∈ C∞c (Bn),

so that Sn = Sn;1 + Sn;2. Using Proposition 3.3.2 one sees that the Schwartz kernel of Sn;1

vanishes identically near the left and right faces of the 0-stretched product B2

0; thus together

with the last part of the proof of Proposition 3.3.4 analyzing the conormal singularity of Ng
we find that Sn;1 ∈ Ψ−1

0 (B) and hence p(∆)Sn;1 ∈ Ψ1
0(B) since p(∆) ∈ Diff2

0(B).

The Laplacian acting on radial distributions is given in terms of geodesic polar coordinates

by ∆ = ∂2
r + n coth(r)∂r and one checks that for n ≥ 1

p(∆)Sn(r) = −(∆ + n− 1) sinh−n(r) cosh(r) = −n sinh−n−2(r) cosh(r). (3.4.5)

Since for f ∈ C∞c (B)

p(∆)Sn;2f(z) =

∫
B
p(∆)

(
(1− ϕ(r))Sn(r)

)∣∣
r=ρh(z,z̃)

f(z̃)dVh(z̃),

(3.4.5) and Proposition 3.3.2 imply that P (∆)Sn;2 ∈ Ψ−∞,n+1,n+1
0 (B). We conclude that

p(∆)Sn ∈ Ψ1,n+1,n+1
0 (B) for all n ≥ 1 and the spaces on which the inversion is valid follow

again from Proposition 3.2.4 by density.
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3.5 Parametrix construction and Stability Estimates

Proposition 3.5.1. Let (M̊n+1, g) be a simple AH manifold. There exists an operator B

such that for δ ∈ (−n/2, n/2) and s ≥ 0

B : xδHs+1
0 (M ; Ω

1/2
0 )→ xδHs

0(M ; Ω
1/2
0 ) (3.5.1)

is bounded and on xδHs
0(M ; Ω

1/2
0 ) one has

BNg = Id−K, K ∈ Ψ−∞,F0 (M), F11 ≥ 1, F10, F01 ≥ n. (3.5.2)

In particular, K : xδHs
0(M ; Ω

1/2
0 )→ xδHs

0(M ; Ω
1/2
0 ) is compact for such δ and s.

Proof. We write Ng = A1 + A2, where A1 ∈ Ψ−1
0 (M), A2 ∈ Ψ−∞,n,n0 (M). By the ellipticity

of Ng (and hence of A1), Theorem 3.8 in [Maz91] shows the existence of B1 ∈ Ψ1
0(M) such

that

B1A1 = Id−K1, K1 ∈ Ψ−∞0 (M).

Note that K1 is not compact on any weighted Sobolev space xσHs
0(M ; Ω

1/2
0 ) since its kernel

does not vanish at B11. Using Proposition 3.2.1 we reach

B1Ng = Id−K2, K2 := K1 −B1A2 ∈ Ψ−∞,n,n0 (M).

We now improve the error term to to ensure that its kernel vanishes at the front face.

For each p ∈ ∂M , Fp(K2) ∈ An,nphg(B11

∣∣
p
) and thus Np(K2) ∈ Ψ−∞,n,n0 (Bn+1), under the

identification of (T+
p M,hp) with (Bn+1, h) using coordinates and the Cayley transform as

described before; this identification depends smoothly on p. Propositions 3.4.2 and 3.2.1

imply that Np(K2)N−1
h = Np(K2)Np(Ng)−1 ∈ Ψ−∞,E0 (Bn+1), E10, E01 ≥ n, Re(E11) ≥ 0. In

fact, we can obtain an improvement of the expansions: to see this, use Propositions 3.2.7

and 3.4.2 to write

Np(K2)Np(Ng)−1 = Np(Id−B1Ng)Np(Ng)−1 = Np(Ng)−1 −Np(B1) ∈ Ψ1,n+1,n+1
0 (Bn+1).

Thus Np(K2)Np(Ng)−1 ∈ Ψ−∞,E0 (Bn+1)∩Ψ1,n+1,n+1
0 (Bn+1) ⊂ Ψ−∞,n+1,n+1

0 (Bn+1). Again using

the identification (T+
p M,hp) ↔ (Bn+1, h), the convolution kernel of Np(K2)Np(Ng)−1 is a
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polyhomogeneous (and in fact smooth) function in An+1,n+1
phg (B11

∣∣
p
). According to (3.2.17),

it can be extended off of B11 smoothly to produce an operator B2 ∈ Ψ−∞,n+1,n+1
0 (M) such

that at each p ∈ ∂M , Fp(B2) agrees with the convolution kernel of Np(K2)Np(Ng)−1. By

Lemma 3.2.5 and Proposition 3.2.7 this implies that Fp(B2Ng) = Fp(K2). Setting B =

B1 +B2 ∈ Ψ1,n+1,n+1
0 (M) and using Proposition 3.2.1 we find

BNg = Id−K, K ∈ Ψ−∞,F0 (M),

F11 = {(1, 0)} ∪ {(2n+ 1, 1)}, F10 = F01 = {(n, 0)} ∪ {(n+ 1, 1)}.

As already stated earlier, by Proposition 3.2.4 one has that for s ≥ 0,Ng : xδHs
0(M ; Ω

1/2
0 )→

xδ
′
Hs+1

0 (M ; Ω
1/2
0 ) is bounded provided δ > −n/2, δ′ < n/2 and δ′ ≤ δ. Moreover, B :

xδ
′
Hs+1

0 (M ; Ω
1/2
0 )→ xδ

′′
Hs

0(M ; Ω
1/2
0 ) is bounded provided δ′ > −n/2− 1, δ′′ < n/2 + 1 and

δ′′ ≤ δ′. Hence choosing δ = δ′ = δ′′ ∈ (−n/2, n/2) we obtain (3.5.1) and (3.5.2). Moreover,

for such choice of δ one can choose δ̃ such that δ < δ̃ < min{n/2, δ + 1}, and s̃ > s to

guarantee that

K : xδHs
0(M ; Ω

1/2
0 )→ xδ̃H s̃

0(M ; Ω
1/2
0 )

is bounded, implying that K : xδHs
0(M ; Ω

1/2
0 )→ xδHs

0(M ; Ω
1/2
0 ) is compact, as claimed.

Proposition 3.5.1 together with Proposition 3.2.4 imply that for δ ∈ (−n/2, n/2)

xδL2(M ; Ω
1/2
0 ) ∩ kerNg ⊂

⋂
m∈R

xδHm
0 (M ; Ω

1/2
0 ) =: xδH∞0 (M ; Ω

1/2
0 ) ⊂ C∞(M̊ ; Ω

1/2
0 ). (3.5.3)

We will now show using a technique shown to us by Rafe Mazzeo that the functions in (3.5.3)

also have polyhomogeneous expansions at the boundary. We start by showing tangential

regularity (here we work with functions as opposed to half densities for convenience).

Lemma 3.5.2. Let u ∈ xδL2(M ; dVg) ∩ kerNg, with δ ∈ (−n/2, n/2). Then

u ∈ xδH∞b (M ; dVg) := {u ∈ xδL2(M ; dVg) :

V1 · · ·Vm u ∈ xδL2(M ; dVg), for all m ≥ 0, Vj ∈ Vb(M)}.
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Proof. Smoothness of u in M̊ was already remarked in (3.5.3). By analogy with Diffm0 (M),

below we write Diffmb (M) for the differential operators consisting of finite sums of at most

m-fold products of vector fields in Vb(M). Let u be as in the statement and δ ∈ (−n/2, n/2).

We will show that for any m ≥ 0, if Pu ∈ xδL2(M ; dVg) whenever P ∈ Diffmb (M), then

P ′u ∈ xδL2(M ; dVg) whenever P ′ ∈ Diffm+1
b (M). Since u ∈ xδL2(M ; dVg) by assumption,

this suffices to prove the lemma.

The claim will be shown by induction. To motivate the inductive hypothesis, first observe

that a vector field V ∈ Vb(M) lifts from the left factor of M2 to a vector field on M2
0

tangent to the interior of the side faces, which is either smooth everywhere on M2
0 or it

blows up at the front face with order 1. Thus by Proposition 3.5.1 we have V u = V Ku with

V K ∈ Ψ
−∞,F10,F01,F ′11
0 (M), F ′11 = F11 − 1 ≥ 0. This implies that V u ∈ xδL2(M ; dVg), by

Proposition 3.2.4.

Now fix m ≥ 0 and assume that if P ∈ Diffm+1
b (M), then Pu can be written as a finite

sum

Pu =
∑
j

Q
(m)
j P

(m)
j u, Q

(m)
j ∈ Ψ

−∞,F10,F01,F ′11
0 and P

(m)
j ∈ Diffmb (M). (3.5.4)

As we already showed, the claim is true for m = 0. We will show that (3.5.4) holds for m+1.

Any operator in Diffm+2
b (M) can be written as a finite sum of the form

∑
j VjPj, where

Vj ∈ Vb(M) and Pj ∈ Diffm+1
b (M). Thus it suffices to differentiate (3.5.4) by V ∈ Vb(M)

and show that it has the required form. We find

V Pu =
∑
j

V Q
(m)
j P

(m)
j u =

∑
j

(
Q

(m)
j V P

(m)
j u− [Q

(m)
j , V ]P

(m)
j u

)
.

By Proposition 3.30 in [Maz91], [Q, V ] ∈ Ψ−∞,E0 (M) for Q ∈ Ψ−∞,E0 (M) and V ∈ Vb(M).

Thus [Q
(m)
j , V ] ∈ Ψ

−∞,F10,F01,F ′11
0 (M) for all j. Since V P

(m)
j , P

(m)
j ∈ Diffm+1

b (M) we obtain

(3.5.4) for m+ 1.

Now the fact that for any m ≥ 0, Pu ∈ xδL2(M ; dVg) for P ∈ Diffmb (M) implies that

P ′u ∈ xδL2(M ; dVg) for P ′ ∈ Diffm+1
b (M) follows immediately by (3.5.4) and Proposition

3.2.4.
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We will use the Mellin transform to show the existence of polyhomogeneous expansion at

the boundary for elements in the nullspace of Ng. We briefly recall its definition and main

properties. Below we write R+ = (0,∞).

Definition 3.5.3. If f ∈ C∞c (R+) and ζ ∈ C we define the Mellin Transform of f by

fM(ζ) =

∫ ∞
0

xζf(x)
dx

x
.

By the fact that fM(ζ) = F(f(exp( · )))(iζ) for ζ imaginary, we see that for f ∈ C∞c (R+)

the Mellin transform is rapidly decaying along each line ζ = α + iη, as R 3 η → ±∞ where

α ∈ R is constant. Moreover, there is automatically a Plancherel type theorem: that is, we

obtain an isomorphism

M : L2(R+;
dx

x
)→ L2({Re(ζ) = 0}; |dζ|).

More generally, the Mellin transform induces an isomorphism

M : xδL2
(
R+;

dx

x

)
→ L2({Re(ζ) = −Re(δ)}; |dζ|)

with inverse given by

u(x) =
1

2π

∫
Re(ζ)=−Re(δ)

x−ζuM(ζ)|dζ|.

Moreover, by the Paley-Wiener theorem if u ∈ xδL2
(
R+; dx

x

)
and suppu ⊂ [0, 1) then

uM extends to a holomorphic function on the half plane {Re(ζ) > −Re(δ)}, uniformly

in L2({Re(ζ) = α}; |dζ|) for α ≥ −Re(δ), that is, supα≥−Re(δ) ‖uM‖L2({Re(ζ)=α},|dζ|) ≤ C. On

the other hand, if u ∈ L2(R+; dx
x

) with suppu ⊂⊂ (0,∞) then uM(ζ) extends to be entire,

with |uM(ζ)| ≤ AeB|Re(ζ)| for constants A,B depending on u. By analogy with the Fourier

transform, we also have (x∂xu)M(ζ) = −ζuM(ζ) on the half plane {Re(ζ) ≥ −Re(δ)} pro-

vided u ∈ xδH1
b (R+; dx

x
) := {u ∈ xδL2(R+; dx

x
) : x∂xu ∈ xδL2(R+; dx

x
)} with suppu ⊂ [0, 1).

Moreover, if ϕ ∈ C∞c
(
[0,∞)

)
is identically 1 near 0 then (xδ| log(x)|kϕ)M(ζ) is holomorphic

on the half plane {Re(ζ) > −Re(δ)} for k non-negative integer, and using an integration by

parts one sees that it extends meromorphically on C, with a pole of order k + 1 at ζ = −δ.
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If M is a compact manifold with boundary one can use a product decomposition [0, ε)x×

∂M of a collar neighborhood of ∂M and compute the Mellin transform in the x variable for

polyhomogeneous conormal functions supported near ∂M . If ϕ ∈ C∞(M) is supported near

∂M and u ∈ AEphg(M), then (uϕ(x))M is meromorphic on C with poles of order p + 1 at

ζ = −s− ` and values in C∞(∂M) for each (s, p) ∈ E and for ` ∈ N0 = {0, 1, . . . }. The fact

that the space AEphg(M) is invariantly defined, as already remarked earlier, implies that the

analyticity properties of (ϕu)M are invariantly defined.

Before we show the existence of an asymptotic expansion for elements in the nullspace of

Ng we show a lemma about index sets.

Lemma 3.5.4. Let E1, E2, F ⊂ C×N0 be index sets satisfying (3.2.2). Then (E1∪E2)+F ⊂

(E1 + F )∪(E2 + F ).

Proof. First note that (E1 ∪ E2) + F = (E1 + F )∪(E2 + F ) ⊂ (E1 + F )∪(E2 + F ). Now

suppose that (s, p1 + p2 + 1) ∈ E1∪E2, where (s, p1) ∈ E1 and (s, p2) ∈ E2 and let (s̃, p̃) ∈ F .

Then (s + s̃, (p1 + p̃) + (p2 + p̃) + 1) ∈ (E1 + F )∪(E2 + F ), so it is also the case that

(s, p1 + p2 + 1) + (s̃, p̃) = (s+ s̃, p1 + p2 + p̃+ 1) ∈ (E1 +F )∪(E2 +F ) by (3.2.2) and we have

shown the claim.

Remark 3.5.5. In general one does not have (E1∪E2) + F = (E1 + F )∪(E2 + F ). For

instance consider the index sets E1 = {(1, 10)}, E2 = {(1/2, 0)} and F = {(1/2, 5), (0, 0)}.

Then (1, 16) ∈ (E1 + F )∪(E2 + F ) \
(
(E1∪E2) + F

)
.

Proposition 3.5.6. Let u ∈ xδL2(M ; dVg) ∩ kerNg, with δ ∈ (−n/2, n/2). Then u ∈

AEphg(M) with E =
⋃
j≥0(F10 + jF11), where F10, F11 are the index sets in (3.5.2) and jF11 =∑j

i=1 F11. Note that F10 + jF11 ≥ n+ j and hence E is an index set.

Proof. By (3.5.3), any u as in the statement is smooth in M̊ , hence it suffices to show

the existence of an asymptotic expansion at the boundary for u. We first show that if

u ∈ xδL2(M ; dVg)∩kerNg for some δ ∈ (−n/2, n/2) then u ∈ xδ′H∞0 (M ; dVg) for all δ′ < n/2.

Since u = Ku, the mapping properties of K (by (3.5.2) and Proposition 3.2.4) imply that
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u ∈ xδ1H∞0 (M ; dVg) provided δ1 < n/2, δ1 ≤ δ + 1, that is, the existence of a parametrix

allows us to obtain an improvement in the decay of u. Using the improved decay and

u = Ku j times, we inductively find that in fact u ∈ xδjH∞0 (M ; dVg), provided δj < n/2

and δj ≤ δ + j, that is, taking j sufficiently large we conclude that u ∈ xδ′H∞0 (M ; dVg) for

δ′ < n/2. Equivalently, u ∈ xτH∞0
(
M ; |dxdy|

x

)
, where τ < n. (For the remaining part of the

argument we prefer to use the measure induced by Ωb(M), which by abuse of notation write

as |dxdy|
x

, due to its more natural behavior with respect to the Mellin transform.) By Lemma

3.5.2, u ∈ xτH∞b
(
M ; |dxdy|

x

)
for τ < n.

Functions in xτH∞b (M ; |dxdy|
x

) supported near ∂M can be identified with functions in⋂
k,`∈N0

xτHk
b (dx/x;H`(∂M)), where xτHk

b (dx/x;H`(∂M)) is the space of v : R+ → H`(∂M)

that are almost everywhere on R+ k times Fréchet differentiable (and supported near 0), and

‖x−τ (x∂x)jv‖H`(∂M) ∈ L2(dx/x) for j = 0, . . . , k. Therefore, if ϕ ∈ C∞c (M) is supported in

a sufficiently small neighborhood of ∂M and identically 1 near ∂M , by taking the Mellin

transform in x we find that (ϕu)M(ζ) is holomorphic in the half plane {Re(ζ) > −τ}, with

values in smooth functions with respect to y and with the L2({Re(ζ) = α}; |dζ|) norm of

‖(ϕu)M‖H`(∂M) being uniformly bounded for α ≥ −τ for each `.

We now recover the leading order term in the expansion of u at ∂M . We first make the

observation that localizing K near the boundary from the left does not alter its index sets:

that is, if ϕ ∈ C∞c (M) is as before, i.e. ϕ ≡ 1 near ∂M and supported near ∂M , then ϕK ∈

Ψ−∞,F0 (M), with F = (F10, F01, F11) as in (3.5.2). Recall that F10 =
⋃
j≥0 {(n+ j, pj)} with

p0 = 0 and denote F `
10 =

⋃
j≥` {(n+ j, pj)} for ` ∈ N0. Now let P0 = (x∂x − n) ∈ Diff1

0(M);

P0 lifts to M2
0 to a C∞ vector field that takes the form (s∂s − n) near B10, where as before

s is a defining function for B10. Then K0 := P0(ϕK) ∈ Ψ
−∞,F 1

10,F01,F11

0 (M), that is, the term

of order n in the expansion of ϕK at the left face of M2
0 is removed. This allows us to show

that K0u ∈ xτH∞b (M ; |dxdy|
x

) if τ < n + 1: by an inductive argument using commutators

as in Lemma 3.5.2, one sees that if P ∈ Diffmb (M), m ≥ 0, then PK0u =
∑Jm

j=1QjPju,

where Pj ∈ Diffmb (M) and Qj ∈ Ψ
−∞,F 1

10,F01,F11

0 (M). Recall that P ′u ∈ xτ ′H∞b (M ; |dxdy|
x

) ⊂

xτ
′
L2(M ; |dxdy|

x
) for P ′ ∈ Diffmb (M), m ≥ 0 and τ ′ < n as observed earlier. Thus Proposition
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3.2.4 together with the fact that F 1
10 ≥ n + 1 − ε for all ε > 0 and F11 ≥ 1 implies that for

P ∈ Diffmb (M), PK0u ∈ xτL2(M ; |dxdy|
x

) if τ < n+1 and m ≥ 0, thus K0u ∈ xτH∞b (M ; |dxdy|
x

)

for such τ . This implies that (K0u)M(ζ) is holomorphic on the half plane {Re(ζ) > −n −

1} with values in functions smooth in y. Since (P0(ϕu))M = (−ζ − n)(ϕu)M, (ϕu)M =

(−ζ − n)−1(K0u)M and we conclude that (ϕu)M extends meromorphically on the half plane

{Re(ζ) > −n − 1}, with a pole of order 1 at ζ = −n and values in smooth functions on

∂M . Computing the inverse Mellin transform on the line {Re(ζ) = −n − 1 + ε}, where

ε > 0 is small (note that on such a line (−ζ − n)−1(K0u)M depends smoothly on y and is in

L2({Re(ζ) = −n− 1 + ε}; |dζ|) for each y), we recover the leading term of the expansion of

u: near ∂M

u(x, y) = a00(y)xn + v, a00 ∈ C∞(∂M), v ∈ xτH∞b
(
M ;
|dxdy|
x

)
, τ < n+ 1.

Now suppose that we have recovered the asymptotic expansion of u up to the m-th

exponent that appears in the index set E and corresponds to powers of x, where E is defined

in the statement of the proposition. It will be convenient to write E =
⋃
j≥0 {(n+ j, rj)}

and F10 + mF11 =
⋃
j≥m {(n+ j, rmj )}, so that rj + 1 =

∑j
m=0(rmj + 1).6 Note that r0

j = pj

and also r0 = r0
0 = p0 = 0. Thus suppose that we have

u =um + v where v ∈ xτH∞b
(
M ;
|dxdy|
x

)
, τ < n+m,

and near ∂M um(x, y) =
m−1∑
j=0

rj∑
k=0

ajk(y)xn+j| log x|k, ajk ∈ C∞(∂M). (3.5.5)

We will show that (3.5.5) holds for m+ 1; then by induction we will be done.

By (3.5.5), (ϕu)M is meromorphic on the half plane {Re(ζ) > −n − m} with poles of

order rj + 1 at ζ = −n− j for 0 ≤ j ≤ m− 1. Set Pj = (x∂x − n− j) ∈ Diff1
0(M) and write

Km :=
∏m

j=0 P
pj+1
j (ϕK); then Km ∈ Ψ

−∞,Fm+1
10 ,F01,F11

0 (M) as before. Now by (3.5.5)

m∏
j=0

P
pj+1
j (ϕu) = Kmum +Kmv. (3.5.6)

6Here the notation rmj does not indicate raising to a power: the rmj can be written explicitly in terms of
m, the pj , and the largest powers of logarithmic factors in an expansion induced by F11, but we do not
need such an explicit expression.
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Since Km ∈ Ψ
−∞,Fm+1

10 ,F01,F11

0 (M) with F11 ≥ 1 and Fm+1
10 ≥ n + m + 1 − ε for all ε > 0,

the fact that v ∈ xτH∞b
(
M ; |dxdy|

x

)
, for τ < n + m implies that Kmv ∈ xτH∞b (M ; |dxdy|

x
)

for τ < n + m + 1 using the same commutator argument as before and Proposition 3.2.4.

Moreover, it follows by Proposition 3.2.2 that Kmum ∈ AGphg(M), where

G = Fm+1
10 ∪

(⋃m−1

j=0
(F10 + jF11) + F11

)
⊂Fm+1

10 ∪
(⋃m

k=1
(F10 + kF11)

)
=: G′, (3.5.7)

where the inclusion follows from Lemma 3.5.4. Thus Kmum ∈ AG
′

phg(M). Upon taking the

Mellin transform in (3.5.6),

m∏
j=0

(−ζ − n− j)pj+1(ϕu)M(ζ) = (Kmum)M(ζ) + (Kmv)M(ζ), (3.5.8)

where (Kmv)M(ζ) is holomorphic in {Re(ζ) > −n − m − 1} (with values in C∞(∂M)).

On the other hand, for 1 ≤ j ≤ m, (Kmum)M(ζ) has a pole of order
∑j

k=1(rkj + 1) at

ζ = −n − j. Note that the index set Fm+1
10 in (3.5.7) does not contribute any poles in the

open half plane {Re(ζ) > −n − m − 1}. Thus upon dividing we find that (ϕu)M(ζ) is

meromorphic on the half plane {Re(ζ) > −n−m− 1} with values in C∞(∂M) and poles of

order pj + 1 +
∑j

k=1(rkj + 1) = (r0
j + 1) +

∑j
k=1(rkj + 1) = rj + 1 at ζ = −n− j, 0 ≤ j ≤ m.

Taking the inverse Mellin transform of (3.5.8) on a vertical line {Re(ζ) = −n−m− 1 + ε}

for small ε > 0 similarly to the first inductive step we obtain (3.5.5) for m + 1 and we are

done.

Remark 3.5.7. It follows from (3.5.7) that the index set E in the statement of Proposition

(3.5.6) allows for higher powers of logarithmic factors than it needs to, but its form suffices

for our needs.

We will need the following standard result from functional analysis (see [SU04] for a

proof):

Lemma 3.5.8. Let X, Y , Z be Banach spaces, and let A : X → Y be bounded and injective.

If there exists a compact operator K : X → Z such that

‖u‖X ≤ C (‖Au‖Y + ‖Ku‖Z) , u ∈ X



135

for some constant C, then there exists a constant C ′ such that

‖u‖X ≤ C ′‖Au‖Y , u ∈ X.

We now prove the main theorem:

Proof of Theorem 3. Let u ∈ xδL2(M ; dVg) ∩ ker(Ng), δ ∈ (−n/2, n/2). We claim that

u = 0. Note that the X-ray transform is well defined on such a u: by Corollary 3.3.5,

Iu ∈ 〈η〉−δ′h L2(∂−S
∗M ; dλ∂), δ

′ < min{δ, 0}. By Proposition 3.5.6, u ∈ AEphg(M), E ≥ n. In

particular, u ∈ xδL2(M ; dVg) for δ < n/2. Now by (3.1.6) and the discussion immediately

after it we find

0 = (Ngu, u)L2(M ;dVg) =(I∗Iu, u)L2(M ;dVg) = ‖Iu‖2
L2(∂−S∗M ;dλ∂).

This implies that Iu = 0. Then one checks that the proof of Theorem 1 in [GGS+], which

shows injectivity of I on xC∞(M), also applies for polyhomogeneous functions in AEphg(M),

E ≥ 1. More specifically, by the proof of Proposition 3.15 there it follows that for u ∈

AEphg(M) ∩ ker I one has the stronger result u ∈ Ċ∞(M) (i.e. u vanishes to infinite order at

the boundary). Then the injectivity argument using Pestov identities in the proof of Theorem

1 in the same paper yields u ≡ 0. We have shown that Ng is injective on xδL2(M ; dVg),

δ > −n/2. Now by Proposition 3.5.1 we have

‖u‖xδHs
0(M ;dVg) ≤ C

(
‖Ngu‖xδHs+1

0 (M ;dVg) + ‖Ku‖xδHs
0(M ;dVg)

)
, δ ∈ (−n/2, n/2), s ≥ 0,

where K : xδHs
0(M ; dVg)→ xδHs

0(M ; dVg) is compact. Thus Lemma 3.5.8 implies

‖u‖xδHs
0(M ;dVg) ≤ C ′‖Ngu‖xδHs+1

0 (M ;dVg), δ ∈ (−n/2, n/2), s ≥ 0,

which is the claimed estimate.
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Boston, Inc., Boston, MA, second edition, 1999.

[Hel11] S. Helgason. Integral geometry and Radon transforms. Springer, New York, 2011.



138

[HU18] S. Holman and G. Uhlmann. On the microlocal analysis of the geodesic X-ray

transform with conjugate points. J. Differential Geom., 108(3):459–494, 2018.
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[SW16] A. Sá Barreto and Y. Wang. The semiclassical resolvent on conformally com-

pact manifolds with variable curvature at infinity. Comm. Partial Differential

Equations, 41(8):1230–1302, 2016.

[Sai91] X. Saint Raymond. Elementary introduction to the theory of pseudodifferential

operators. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1991.

[Sha94] V. A. Sharafutdinov. Integral geometry of tensor fields. Inverse and Ill-posed

Problems Series. VSP, Utrecht, 1994.

[Sim90] S. R. Simanca. Pseudo-differential operators, volume 236 of Pitman Research

Notes in Mathematics Series. Longman Scientific & Technical, Harlow; copub-

lished in the United States with John Wiley & Sons, Inc., New York, 1990.

[SU04] P. Stefanov and G. Uhlmann. Stability estimates for the X-ray transform of

tensor fields and boundary rigidity. Duke Math. J., 123(3):445–467, 2004.

[SU12] P. Stefanov and G. Uhlmann. The geodesic X-ray transform with fold caustics.

Anal. PDE, 5(2):219–260, 2012.



141

[Tay11] M. E. Taylor. Partial differential equations II. Qualitative studies of linear equa-

tions, volume 116 of Applied Mathematical Sciences. Springer, New York, sec-

ond edition, 2011.

[UV16] G. Uhlmann and A. Vasy. The inverse problem for the local geodesic ray trans-

form, with an appendix by H. Zhou. Inventiones mathematicae, 205(1):83–120,

July 2016.

[Wal98] W. Walter. Ordinary differential equations, volume 182 of Graduate Texts in

Mathematics. Springer-Verlag, New York, 1998. Translated from the sixth Ger-

man (1996) edition by Russell Thompson, Readings in Mathematics.


	List of Figures
	Introduction and Statement of the Results
	Local Injectivity for the Geodesic X-Ray Transform on Asymptotically Hyperbolic Manifolds
	Even Asymptotically Hyperbolic equals Projectively Compact
	Local Injectivity for Even Metrics
	Connections Associated to AH Metrics Even mod O (r N)
	Stability and Perturbation Estimates
	Analysis of Kernels
	Blown-Up Spaces
	Analysis on blow-ups


	Asymptotically Hyperbolic Manifolds with Boundary Conjugate Points but no Interior Conjugate Points
	The C1,1 Metric
	The Metric
	Geodesics and Sectional Curvature
	Analysis of Jacobi Fields

	Smooth Perturbation

	Stability Estimates for the X-Ray Transform on Simple AH manifolds
	Geodesic Flow of AH Manifolds and the X-Ray Transform
	The 0-Geometry and 0-Pseudodifferential Calculus 
	The Pseudodifferential Property
	The Model Operator
	Parametrix construction and Stability Estimates


